
 

 

Original Article                               Iran J  Ped Hematol Oncol. 2025, Vol 15, No 4, 604-620 

 

Investigating the Immunological Significance of TGFB1 and MDA in 

ALL TME 
 

Yibei Song MD1, Wienaldi MD1*, Maya Sari Mutia MD1 

 
1.  Universitas Prima Indonesia  
*Corresponding author:  Dr. Wienaldi, Universitas Prima Indonesia, JI. Sampul No.3, Sei Putih Bar, Kec. Medan Petisah, 

Kota Medan, Sumatera Utara 20118. Email: wienaldi111@outlook.com. ORCID ID: 0009-0008-2351-8423.  

       

Received: 11 November 2024          Accepted: 26 May 2025 

 

Abstract 

Background: The tumor microenvironment (TME) in acute lymphoblastic leukemia (ALL) significantly shapes 

disease progression and therapeutic responses. This study investigates the regulatory role of bone marrow 

mesenchymal stem cell (BMSC)-released transforming growth factor beta-induced factor homeobox 1 (TGIF1) 

on myeloid nuclear differentiation antigen (MNDA) expression, immune infiltration, and patient prognosis in 

ALL. 

Materials and Methods: A comprehensive bioinformatics approach analyzed gene expression, protein 

interactions, and immunological correlations. Differential expression, enrichment analyses, and protein-protein 

interaction (PPI) networks identified key regulatory genes. The relationship between TGIF1 and MNDA and 

their immunological impact were assessed through correlation and survival analyses. 

Results: Differential analysis identified 424 differentially expressed genes (DGEs). The PPI network and Cox 

regression highlighted MNDA as a significant gene associated with patient outcomes. High MNDA expression 

correlated with better survival (P=0.013), and ROC analysis demonstrated its strong prognostic potential 

(AUC=0.934). GSEA indicated MNDA involvement in immune-related signaling pathways. Immune infiltration 

analyses linked MNDA expression to seven immune cell types. Additionally, transcription factor TGIF1 

positively correlated with MNDA expression, significantly upregulated in healthy BMSCs but downregulated in 

ALL samples. 

Conclusion: BMSC-derived TGIF1 positively regulates MNDA expression, influencing immune infiltration and 

ALL progression. Targeting the interplay between TGIF1 and MNDA introduces a new molecular strategy for 

managing ALL. 

Keywords: Acute Lymphoblastic Leukemia, Bioinformatics, Bone Marrow Mesenchymal Stem Cells, Myeloid 

Nuclear Differentiation Antigen, TGFB1

 

Introduction 
Acute lymphoblastic leukemia (ALL), a 

hematological cancer, originates from the 

malignant transformation of lymphoid 

progenitors (1). As one of the most 

aggressive hematological malignancies, 

ALL is most commonly diagnosed in 

childhood (2-4). The disease is marked by 

chromosomal abnormalities and genetic 

mutations that impair the normal 

differentiation and proliferation of 

lymphoid precursors (5). Beyond the 

intrinsic genetic alterations, mounting 

studies highlights the critical role of the 

tumor microenvironment (TME) in 

leukemia progression, treatment resistance, 

and immune evasion (6). 

 

 

Notably, the infiltration of immune and 

stromal cells in the bone marrow TME has 

been strongly associated with the initiation 

and progression of ALL (7). Therefore, 

targeting TME-associated molecular 

interactions may provide new therapeutic 

strategies for ALL treatment. Myeloid 

nuclear differentiation antigen (MNDA) is 

a myeloid cell-specific protein involved in 

cell differentiation and apoptosis 

regulation (8, 9). Acute Lymphoblastic 

Leukemia (AML) patients with reduced 

MNDA expression exhibit a higher 

proportion of granulocytes and monocytes 

(10). Conversely, MNDA overexpression 

is associated with better outcomes in 

chronic lymphocytic leukemia (CLL), 

where it influences the expression of 
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MCL-1 and BCL-2 to promote apoptosis 

in CLL cells (11). These observations 

indicate that MNDA may have 

immunomodulatory functions within the 

TME of hematologic malignancies. 

In this study, transforming growth factor 

beta-induced factor homeobox 1 (TGIF1) 

was identified as an upstream 

transcriptional regulator of MNDA in both 

bone marrow mesenchymal stem cells 

(BMSCs) and ALL cells. TGIF1 is known 

to play roles in hematopoietic cell 

differentiation and leukemia suppression. 

Its expression is reduced in blasts from 

patients with mixed lineage leukemia 

rearrangement (MLL-r). In contrast, 

TGIF1 overexpression in MLL-AF9-

transformed cells faciliates differentiation 

and delays leukemia onset (12). 

Furthermore, TGIF1 suppresses stem cell 

self-renewal, and its downregulation has 

been associated with poor long-term 

survival in acute myeloid leukemia (13). 

Interestingly, TGIF1 is also expressed in 

the vascular compartment of chorionic 

MSCs, suggesting a potential role in MSC-

mediated immunoregulation (14). Given 

the emerging importance of MSCs in 

hematopoiesis and immune modulation 

(15), it is hypothesized that BMSCs-

derived TGIF1 may regulate MNDA 

expression, thereby influencing immune 

cell dynamics and ALL progression. 

Although TGIF1 and MNDA have each 

been implicated in hematological 

malignancies, their interaction within the 

ALL tumor microenvironment remains 

unexplored. This study is the first to 

propose the TGIF1–MNDA axis as a novel 

immunoregulatory pathway and potential 

therapeutic target. TGIF1, a transcriptional 

repressor of TGF-β signaling, was found 

to upregulate MNDA, influencing immune 

cell infiltration (e.g., Tregs, monocytes) 

and modulating apoptotic pathways 

(MCL-1/BCL-2). These findings provide 

insight into immune evasion in ALL and 

suggest that targeting this axis may 

improve chemotherapy response and 

support precision immunotherapy 

strategies (12). 

 

Materials and Methods 
Ethical Statement 

This study is a bioinformatics-based 

retrospective study investigating gene 

expression, protein interactions, and 

immunological correlations in the ALL 

TME. All analyses in this study were 

conducted using publicly accessible 

datasets. As no direct involvement of 

human participants or experimental 

animals occurred, institutional ethics 

approval and individual consent were not 

necessary. 

Datasets downloading and processing 

The dataset was downloaded from the 

Gene Expression Omnibus (GEO, NCBI, 

USA) and the The Cancer Genome Atlas 

(TCGA, National Cancer Institute, USA). 

Using GEO database, GSE206172 

microarray associated with MSCs was 

downloaded, including three adipose 

mesenchymal stem cell (AMSC) samples 

and three BMSCs samples. RNA 

sequencing (RNA-seq) data for ALL was 

retrieved from the TCGA database, 

encompassing 553 samples from tumors 

and one from normal tissue. Utilizing the 

University of California, Santa Cruz 

(UCSC) Xena database, the RNA-seq data 

and survival information for ALL tumor 

samples and RNA-seq data for Genotype-

Tissue Expression (GTEx) normal samples 

were downloaded, including 135 ALL 

tumor samples, 341 tumor samples in 

survival information analysis and 337 

normal blood samples in GTEx. 

Using Perl language, TCGA and GTEx 

databases were merged, and only the genes 

annotated in the two databases were 

retained. The ALL sample data used for 

screening transcription factors (TFs) were 

obtained from TCGA database, and those 

used for the remaining analysis from 

UCSC Xena database (16). 
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Differential analysis 

The analysis for differentially expressed 

genes (DEGs) was executed utilizing the 

"limma" tool in R, focusing on the 

GSE206172 microarray and the TCGA 

and GTEx integrated dataset, with 

selection parameters of |logFC| over 1 and 

p-value under 0.05. Using the R software 

"heatmap" package, heatmap of the DEGs 

was drawn (16). 

Classification of TME and acquisition of 

candidate DGEs  

Classification and scoring of stromal and 

immune cells in the TME were conducted 

using the "estimate" tool in R software. 

The division of stromal and immune cells 

into groups with high and low scores was 

in light of their respective median values. 

Differential gene analyses of these two 

studied cell types were implemented with 

the help of the R software "limma" 

package. The intersection of DGEs 

between stromal and immune cells was 

carried out with the "VennDiagram" tool 

in R, which produced a Venn diagram to 

highlight potential DGEs. 

Gene functional enrichment analysis 

Through the R software "clusterProfiler" 

package, GO and KEGG analyses of the 

candidate DGEs were made. The 

"enrichplot" package facilitated the 

creation of bar and bubble plots, 

showcasing GO enrichment spanning 

biological processes (BP), cellular 

component (CC), and molecular function 

(MF). Meanwhile, the bar, bubble and 

circle plots of KEGG enrichment analysis 

were drawn. Using C2.kegg.v2022.1 

database from the GSEA4.2.3 software, 

the gene enrichment of key genes was 

compared across groups characterized by 

high and low expressions. Using the 

"ggplot2" package in R, we visualized the 

pathways significantly enriched by the key 

genes, followed by construction of 

multiple GSEA maps (17). 

 

 

Establishing networks of protein-

protein interactions (PPI) 

Through the STRING database, candidate 

DGEs obtained from the TME were used 

for PPI analysis (with "species" limited to 

"human" and confidence level set as 0.7). 

The number of adjacency nodes of each 

gene was counted with R software, and the 

top 55 genes were extracted to plot a 

histogram. 

Univariate COX analysis and receiver 

operating characteristic (ROC) curve 

analysis 

Through the R software "survival" 

package, univariate Cox analysis of 

candidate DGEs was performed and forest 

plot of the genes with p < 0.05 was drawn. 

The 13 prognosis-related genes obtained 

from the univariate Cox analysis were 

intersected with the 55 genes in the PPI 

network and the Venn plot was drawn to 

obtain the key genes. Based on the 

expression of candidate DGEs and status 

of the samples from the ALL 

transcriptome data, the ROC was plotted 

utilizing the R software pROC package to 

examine the accuracy of the selected key 

genes (18). A gene’s capacity to serve as a 

biomarker was validated through its area 

under the ROC curve (AUC). 

Differential analysis and survival 

analysis of single gene 

Through the R software "beeswarm" 

package, a differential expression heatmap 

of the key genes was drawn. Meanwhile, 

the key genes were classified into high- 

and low-expression groups concerning 

their expression. Through the "survival" 

and "survminer" packages, survival 

analysis of the key genes was made. 

Immune infiltration analysis 

Key genes were stratified into high- and 

low-expression cohorts concerning their 

relative transcript abundance. To 

characterize the immune landscape of ALL 

samples, CIBERSORT was employed to 

deconvolute immune cell populations. The 

algorithm was run with 100 permutations 

to ensure robustness, and only samples 
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yielding results with p < 0.05 were 

obtained. Through the R software 

"corrplot" package, the results obtained 

from CIBERSORT calculations were 

visualized, and the immune cell histogram 

and correlation plot were drawn (19). 

Immune cell variability was subjected to 

differential analysis via "vioplot", while 

intercellular correlations were visualized 

through "ggplot2", "ggpubr", and 

"ggExtra", retaining results with p < 0.05. 

Overlapping immune features from both 

analyses were integrated via a Venn 

diagram to pinpoint gene-associated 

immune subsets (20). 

TF co-expression prediction 

Through the human TF website, human TF 

information was obtained. Differentially 

up-regulated genes in GSE206172 

microarray and differentially down-

regulated genes in the merged data of 

TCGA and GTEx were extracted and 

intersected with human TFs, and a Venn 

plot was mapped to obtain key TFs. 

Correlation analysis between each TF and 

the key gene was performed (21, 22). 

Statistical analysis 

R software v4.0.1 (R Foundation for 

Statistical Computing, Vienna, Austria) 

was employed for data processing. The 

mean ± standard deviation was used to 

express the measurement data. The initial 

step involved conducting tests for 

normality and variance homogeneity. 

Unpaired t-tests were used to compare data 

from two groups that conformed to normal 

distribution and variance homogeneity, 

followed by a Tukey post hoc test. 

Correlations among observed indicators 

were established through Spearman’s 

correlation analysis. Differences with p-

values below 0.05 were interpreted as 

statistical significance. 

 

 

 

 

Results 
Bioinformatics analysis for screening 

key genes in the TME affecting the 

prognosis of ALL patients  

To illuminate molecular mechanisms to 

improve ALL, key genes were screened by 

performing differential analysis of immune 

and stromal cells in the TME applying 

ALL RNA-seq data. In addition, PPI and 

single-gene Cox regression analysis of 

candidate DGEs were performed. Single-

gene survival analysis predicted the key 

genes and survival prognosis of ALL 

patients. Functional enrichment analysis 

was implemented to analyze the biological 

significance of key genes, and their 

associations with immune cell infiltration 

were examined through immune 

infiltration analysis. The bioinformatics 

analysis process is elucidated in Figure 1. 

The workflow illustrates the step-by-step 

bioinformatics pipeline employed in this 

study, starting from dataset acquisition to 

differential gene expression analysis, gene 

functional enrichment, PPI network 

construction, survival analysis, immune 

infiltration analysis, and transcription 

factor prediction. 

Differential gene analysis identified 424 

common DEGs in two studied cells in 

the TME of ALL 

The ALL-related gene expression dataset 

was gathered through the UCSC Xena 

database, including 135 tumor samples. 

The TME in ALL is composed of immune 

cells and stromal cell types. The cellular 

contents of each sample determined their 

classification into high and low content 

groups, which were then analyzed for 

differential gene expression. Differential 

analysis of stromal cells was performed, 

with 771 DEGs obtained (Figure 2A). 

Differential analysis of immune cells was 

performed, and 828 DEGs were obtained 

(Figure 2B). The DEGs obtained from 

stromal cells and immune cells differential 

analyses were intersected, which finally 
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yielded 424 common DEGs (Figure 2C) as 

candidate DGEs. 

GO and KEGG enrichment analyses 

validated that the candidate DGEs were 

enriched in the pathways related to 

ALL development 

GO functional analysis and KEGG 

pathway analysis of candidate DGEs were 

performed to deeply explore the MF 

regulated by candidate DGEs. The results 

of GO functional analysis showed that the 

candidate DGEs were mainly enriched in 

positive regulation of cytokine production, 

leukocyte migration, cell chemotaxis, 

myeloid leukocyte activation and positive 

regulation of defense response in BP. 

Candidate DGEs were mainly enriched in 

tertiary granule, secretory granule 

membrane and external side of plasma 

membrane in CC. Candidate DGEs were 

mainly enriched in immune receptor 

activity, cytokine receptor activity, 

chemokine receptor activity, amide 

binding, and peptide receptor activity in 

MF (Figure 3A, B). 

The KEGG analysis uncovered that the 

candidate DGEs were predominantly 

linked to cytokine-cytokine receptor 

interaction, neutrophil extracellular trap 

formation, NOD-like receptor pathway 

(Figure 3C, D). 

The above results proposed that the 

candidate DGEs were predominantly 

engaged in promoting leukocyte migration, 

activation, and the positive modulation of 

cytokine activities. The candidate DGEs 

were mainly enriched in the secretory 

granule membrane and lateral plasma 

membrane, with MF involved in regulation 

of immune receptor, cytokine receptor and 

chemokine activity. 

KEGG analysis found that the candidate 

DGEs were involved in life activities such 

as neutrophil extracellular trap formation, 

interactions between cytokines and 

cytokine receptors, and NOD-like receptor 

pathway. 

 

MNDA was a key gene in the TME of 

ALL affecting the prognosis of ALL 

patients 

The candidate DGEs were input into the 

String database, with the "species" defined 

as "human", and the confidence level was 

set to 0.7. The PPI network of candidate 

DGEs in the TME of ALL was constructed 

(Figure 4A). The number of adjacency 

nodes of each gene was counted with R 

software, and the top 55 genes based on 

the node adjacency count were selected as 

the key network genes, followed by 

delineation of a bar graph (Figure 4B). 

To further study the relationship between 

candidate DGEs and ALL patient 

prognosis, the survival data and gene 

expression data of ALL patients from the 

UCSC dataset were integrated, univariate 

Cox analysis was performed, and a forest 

map was drawn (Figure 4C). A total of 13 

genes could significantly affect the 

prognosis of ALL patients, among which 

11 genes were high risk genes and 2 genes 

were low risk genes. 

The key genes of PPI network were 

intersected with the prognosis-related 

genes of ALL patients, and MNDA 

(Figure 4D) was obtained. MNDA was the 

key gene affecting the prognosis of ALL 

patients in the TME. 

The expression of MNDA in ALL samples 

was evaluated using single-gene 

differential expression analysis, which 

revealed a significant downregulation of 

MNDA compared to normal samples 

(Figure 5A). Survival analysis (Kaplan-

Meier) unveiled that patients with 

diminished MNDA levels faced 

significantly worse outcomes than those 

with higher expression (p = 0.013) (Figure 

5B). The data suggests that MNDA may 

act as a prognostic biomarker for ALL, as 

its lower expression is associated with 

disease progression and reduced survival. 

The following ROC curve yielding an 

AUC of 0.934 (Figure 5C), demonstrating 

excellent predictive accuracy. In general, 

an AUC value above 0.9 is considered 
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highly reliable for classification, further 

supporting the potential of MNDA as a 

prognostic biomarker for ALL. 

GSEA revealed that MNDA regulated 

the development of ALL through 

enrichment in multiple immune-related 

pathways 

GSEA found that high MNDA expression 

in the ALL UCSC dataset was strongly 

associated with an enrichment in various 

immune-related signaling pathways, 

including cytokine-cytokine receptor 

interaction, natural killer cell-mediated 

cytotoxicity, Toll-like receptor signaling 

pathway and NOD-like receptor signaling 

pathway. Meanwhile, high MNDA 

expression was associated with apoptosis, 

lysosomes, complement and coagulation 

cascades, and hematopoietic cell lineages 

(common lymphoid progenitors or 

common myeloid progenitors) (Figure 6). 

Immune infiltration analysis of tissue 

samples of ALL patients with high or 

low MNDA expression 
TME includes different immune cells (23), 

and immune cell infiltration analysis can 

help us better understand tumor 

development (24). The immune infiltration 

analysis combined with CIBERSORT 

algorithm (Figure 7A) showed that the 

overall composition of immune cells had 

no significant difference between the two 

established groups, but the proportion of 

different immune cells had difference. The 

correlation analysis found a certain 

correlation between the immune cell 

components of the tissue in ALL patients 

(Figure 7B), but most of the correlation 

occurred in the same type of immune cells. 

The differential analysis results (Figure 

8A) displayed that among the immune cell 

components, B cells naive, B cells 

memory, T cells CD4 naive, T cells 

follicular helper, NK cells activated, 

monocytes, macrophages M2 and 

neutrophils had significant difference 

between ALL patients categorized by high 

and low MNDA expression. Moreover, a 

notable correlation was witnessed between 

MNDA expression and immune cell 

components including B cells naive, T 

cells CD4 naive, T cells follicular helper, 

NK cells activated, monocytes, 

macrophages M2, and neutrophils (Figure 

8B-H). The cells obtained from the 

immune cell differential analysis were 

intersected with those obtained from the 

correlation analysis, which yielded seven 

immune cells related to MNDA (Figure 

8I). Among them, B cells naive, T cells 

CD4 naive, T cells follicular helper and 

NK cells activated were negatively 

correlated with MNDA expression, while 

monocytes, macrophages M2 and 

neutrophils were positively correlated with 

MNDA expression. 

These findings imply that MNDA could be 

involved in immune cell infiltration in the 

TME of ALL patients, thereby impacting 

the progression of ALL. 

TGIF1 might regulate MNDA 

expression to affect the development of 

ALL  

To elucidate the regulatory landscape 

governing MNDA expression in ALL, a 

predictive analysis was implemented to 

identify potential upstream TFs involved 

in its modulation. First, transcriptome data 

of healthy AMSCs and BMSCs were 

extracted from GSE206172 microarray for 

differential analysis (Figure 9A), and 316 

down-regulated DEGs in healthy BMSCs. 

Meanwhile, 4753 down-regulated DEGs in 

ALL patients were screened from the 

DEGs in the merged dataset of TCGA and 

GTEx (Figure 9B). Through the humantfs 

website, 1369 human TFs were 

downloaded and intersected with the two 

datasets of DEGs to obtain two TFs 

(MAFB, TGIF1) (Figure 9C). It has been 

reported that TGIF1 affected the 

proliferation of myeloid cells, and the 

absence of TGIF1 could accelerate 

leukemia progression and shorten survival, 

which indicated that TGIF1 had a 
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protective role in the development of 

leukemia (25). 

Results from the Pearson correlation 

analysis uncovered a positive link between 

the expression of TGIF1 and MNDA in the 

TCGA and GTEx transcriptomic data 

(Figure 9D). Through the JASPAR 

website, the binding sites of TGIF1 

(Figure 9E), and binding sites between 

TGIF1 and MNDA promoter regions 

(Table І) were predicted. Collectively, the 

TF TGIF1 might regulate MNDA 

expression, affecting the development of 

ALL.  

 

 

 

 

 

Table І: Binding sites between TGIF1 and MNDA promoter region 
Transcription factor Gene Name Start End Strand Predicted sequence Relative score 

MA0796.1.TGIF1 MNDA 1909 1920 + TGACATCTGAAA 0.81378406 

MA0796.1.TGIF1 MNDA 1909 546 - TTTCAGATGTCA 0.7874207 

MA0796.1.TGIF1 MNDA 764 775 + AGAAAGCTGTCC 0.7614015 

MA0796.1.TGIF1 MNDA 536 547 - TGCCTGCTGCCA 0.7605489 

Note: TGIF1, transforming growth factor beta-induced factor homeobox 1; MNDA, myeloid nuclear differentiation antigen. 
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Figure 1. Schematic overview of bioinformatics analysis process. 
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Figure 2. Identification of common DEGs in stromal and immune cells within the TME of ALL. A, 

Heatmap of DEGs in stromal cells in ALL gene expression dataset. B, Heatmap of DEGs in immune 

cells in ALL gene expression dataset. C, Venn diagram illustrating shared DEGs between stromal and 

immune cell populations. 

 

 

 
Figure 3. GO and KEGG enrichment analyses of candidate DGEs. A & B, GO function analysis of 

candidate DGEs in BP, CC, and MF. C & D, KEGG analysis of candidate DGEs. 
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Figure 4. Identification of key genes in the TME of ALL affecting the prognosis of ALL patients. A, 

PPI network of candidate DGEs in ALL TME. B, Histogram of the key genes of the PPI network. C, 

Forest plot presenting the results of univariate Cox analysis. DEGs are listed on the left, with 

corresponding p-values shown centrally. Hazard ratios, displayed on the right, reflect the relative risk: 

values >1 signifies high-risk genes, while values <1 denotes low-risk genes. Gene risk status is color-

coded—red for high-risk and green for low-risk candidates. D, Venn diagram depicting the overlap 

between hub genes identified from the PPI network and prognosis-related genes in ALL patients. 

 

 
Figure 5. MNDA can significantly affect the prognosis of ALL patients. A, Single-gene differential 

analysis of MNDA. B, Single-gene survival analysis of MNDA. Survival probability is plotted against 

time. The red and blue curves correspond to high- and low-risk groups, respectively. C, ROC curve of 

MNDA. 
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Figure 6. GSEA for the MNDA high expression group. Gene enrichment analysis of MNDA high 

expression in C2.kegg.v2022.1 dataset of GSEA (only immune-related data are shown). 

 

 

Figure 7. Immune cell component analysis and correlation analysis of ALL tissue samples in the 

UCSC dataset. A, Immune cell component analysis of the ALL samples. The abscissa corresponds to 

individual samples, while the ordinate signifies the relative abundance of immune cells. Distinct 

immune cell types are represented by different colors, with the color legend provided on the right. B, 

Immune cell correlation diagram. Each small circle indicates the pairwise correlation between two 

immune cell types. Positive and negative correlation coefficients are indicated by the respective color 

intensities, as shown in the scale bar on the right. 
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Figure 8. Identification of immune cells correlated with MNDA. A, The differential analysis of 

immune cell components in the high and low MNDA expression groups. Abscissa represents the 

immune cell type, and ordinate signifies the proportion of immune cells in the sample. Green 

represents low MNDA expression group, and red represents high MNDA expression group. B-H, 

Correlation analysis between immune cells with significantly different components [B cells naive (B), 

T cells CD4 naive (C), T cells follicular helper (D), NK cells activated (E), monocytes (F), 

macrophages M2 (G), and neutrophils (H)] and MNDA expression. Abscissa indicates MNDA 

expression, and ordinate indicates immune cell content. I, Venn diagram of immune cells correlated 

with MNDA. 
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Figure 9. Prediction of transcription factors that regulate MNDA expression. A, Heatmap of the 

differential analysis of transcriptome data of healthy AMSCs and BMSCs extracted from GSE206172 

microarray. B, Differential analysis of the merged dataset of TCGA and GTEx. C, Venn diagram 

summarizing the shared differentially up-regulated genes in GSE206172 microarray, differentially 

down-regulated genes in the merged dataset of TCGA and GTEx, and human transcription factors. D, 

Correlation analysis between TGIF1 and MNDA. E, The binding sites of TGIF1 predicted through 

JASPAR website. 

 

Figure 10. Schematic illustration of the molecular mechanism of BMSCs-released TGIF1 in 

regulating the development of ALL through MNDA. BMSCs-released TGIF1 can up-regulate the 

expression of MNDA, thereby inhibiting the infiltration of immune cells within the TME of ALL 

patients, which ultimately thwarts the development of ALL. 
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Discussion 
Immune microenvironment is critical in 

ALL and immune-based therapeutic 

methods are promising for ALL treatment 

(26, 27). This study aimed to elucidate the 

mechanism by which BMSCs-derived 

TGIF1 regulates MNDA in the TME of 

ALL and its potential implications for 

disease progression and immune response 

modulation. 

The results identified MNDA as a key 

immune-related gene within the ALL 

TME, with its low expression being 

significantly correlated with poor 

prognosis. MNDA was previously 

associated with hematopoietic 

differentiation and apoptosis regulation 

(28, 10). In CLL, MNDA has been 

reported as a favorable prognostic marker 

(29-31), where its low expression is linked 

to increased apoptosis resistance through 

MCL-1 and BCL-2 regulation (11). 

Expanding on these findings, the study 

suggests that MNDA may exert a broader 

immunoregulatory role in ALL, as its 

expression was found to be concentrated in 

multiple immune-related pathways. 

GSEA further demonstrated that MNDA 

participates in cytokine-cytokine receptor 

interactions, chemokine signaling, and 

neutrophil activation, which are critical 

immune processes within the TME. 

MNDA expression showed a positive 

correlation with neutrophil infiltration, 

consistent with previous reports that 

MNDA is involved in neutrophil activation 

and immune response modulation (32, 33). 

This suggests that MNDA may contribute 

to the immunological dynamics of ALL by 

influencing immune cell interactions, 

thereby affecting disease progression. 

However, further mechanistic studies are 

required to clarify these functional roles. 

In addition to identifying MNDA as a 

prognostic factor, the study also 

demonstrated that TGIF1 may serve as an 

upstream transcriptional regulator of 

MNDA. TGIF1 has been previously 

implicated in hematopoietic differentiation 

and leukemia suppression (25, 34). 

Notably, TGIF1 was found to be 

significantly upregulated in healthy 

BMSCs but downregulated in ALL 

samples, indicating a potential protective 

role. Prior studies have shown that TGIF1 

loss accelerates leukemia progression, 

while its overexpression can counteract 

leukemia stem cell proliferation induced 

by IRF7 deficiency (34). Furthermore, 

TGIF1 expression has been identified in 

the vascular niche of MSCs (14), 

supporting its involvement in stromal-

mediated leukemia regulation. These 

findings align with the hypothesis that 

BMSCs-derived TGIF1 may influence 

MNDA expression and contribute to 

immune modulation within the TME of 

ALL. 

While this study contributes novel 

perspectives on MNDA in ALL, several 

limitations should be acknowledged. First, 

the computational findings were derived 

primarily from RNA-seq profiles of TCGA 

ALL tumor samples and GTEx-derived 

normal blood samples. Despite the 

relatively adequate sample size, the 

observed AUC of 0.934 in ROC analysis 

may be inflated due to potential bias 

arising from internal validation. 

Furthermore, the absence of external 

datasets restricts the generalizability of the 

results and raises concerns about possible 

overfitting. Future work will focus on 

incorporating independent cohorts to 

robustly assess the diagnostic and 

prognostic potential of MNDA. Second, 

the current study is largely grounded in 

bioinformatic inference, and the 

conclusions drawn require validation 

through functional experiments involving 

primary ALL specimens or animal models 

to substantiate the biological relevance of 

the findings. Third, although in silico 

predictions indicated that TGIF1 may act 

as a transcriptional regulator of MNDA via 

promoter binding, this regulatory 
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relationship has yet to be verified by direct 

molecular assays such as ChIP-seq or 

luciferase reporter analysis. Empirical 

confirmation of this interaction remains a 

critical next step. Lastly, the regulation of 

MNDA is likely multifactorial, and 

additional transcription factors not 

assessed in this study may also contribute 

to its expression dynamics. Future 

investigations should broaden the scope to 

identify other key regulators involved in 

MNDA transcriptional control. 

 

Conclusion 
In conclusion, BMSCs-released TF TGIF1 

up-regulated the transcriptional expression 

of MNDA, thus inhibiting immune cell 

infiltration in the TME of ALL and 

ultimately suppressing the development of 

ALL (Figure 10). This research highlights 

potential molecular markers that could be 

pivotal for detecting and treating ALL. 

However, clinical samples could not be 

collected, and in vivo animal models could 

not be constructed for mechanistic 

validation, requiring further research. 
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