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Abstract 

Background: Dysregulation of LncRNA antisense non-coding RNA in the INK4 locus (ANRIL) expression is 

implicated in pathogenesis and disease progression of a variety of cancer types. However, the expression level 

of ANRIL in pediatric patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) has not been 

elucidated, yet. The present study is an attempt to evaluate the expression level of ANRIL at different clinical 

stages in pediatric patients with BCP-ALL. 

Materials and Methods: This case-control study was conducted in Tehran, Iran on peripheral blood samples 

obtained at diagnosis, complete remission, and relapse phases from a total of 50 pediatric BCP-ALL patients 

who were admitted to Mahak Hospital and Rehabilitation Complex, and Rasul Akram Hospital. The ANRIL 

expression analysis was performed by the quantitative real-time polymerase chain reaction (qRT-PCR) method. 

To test the statistical significance, a nonparametric Mann-Whitney U test was used. 

Results: The mean fold-changes of ANRIL gene expression in newly diagnosed patients were [31.51 (18.28 to 

44.75)] compared to the control group [1.06 (0.73 to 1.38)] indicating significant overexpression (P<0.001). 

ANRIL fold-changes significantly declined following achievement of complete remission [1.24 (0.80 to 1.69)] 

compared to the newly diagnosed patients (p<0.001) and increased as the patients experienced relapse [285.4 

(269.70 to 301) (P<0.001)]. 

Conclusions: LncRNA ANRIL may contribute to BCP-ALL pathogenesis and disease progression; casting new 

light on the application of ANRIL as a potential biomarker or therapeutic target in BCP-ALL. 
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Introduction 
Acute lymphoblastic leukemia (ALL) (1) 

is the most common malignancy of early B 

or less commonly T-lymphoid precursors 

in the bone marrow, peripheral blood, and 

extramedullary organs (1). It constitutes up 

to 26% of all neoplasms diagnosed in 

children aged between 0 and 14 years old 

(2). The age-specific incidence of ALL 

demonstrates a bimodal distribution, with 

the highest risk of development in children 

younger than 5 years of age. The risk of 

developing ALL then progressively 

decreases until the late twenties and begins 

to rise again from 30 years onwards (3). 

The outcome for children (1 to 14 years 

old) with ALL has significantly improved 

over the past decades; however, the 

prognosis is not favorable for infants less 

than 12 months of age (4). The majority of 

pediatric B-cell precursor ALL (BCP-

ALL) patients respond well to the 

therapeutic approaches based on risk 

stratification. These approaches include 

chemotherapy with prognosis-adjusted 

toxicity, immunotargeted therapy, and 

hematopoietic stem cell transplantation. 

Nonetheless, a minority of patients display 
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resistance which is associated with poor 

outcomes (5). Although it is widely 

recognized that genetic alterations may 

have a major role in the pathogenesis of 

ALL, these modifications alone are not 

able to develop leukemia (6). Currently, it 

is well-documented that the accumulation 

of genetic and epigenetic changes is 

responsible for the development of the 

special features of ALL (7). 

Over the past decades, it is 

comprehensively identified that non-

coding ribonucleic acids (ncRNAs), 

especially long-non-coding ribonucleic 

acids (LncRNAs), contribute to the 

tumorigenesis via epigenetic remodeling 

(8, 9). Recent advances in genomics and 

transcriptomics have declared that a great 

part of the human genome is transcribed to 

RNAs; however only less than 2% of the 

human transcriptome is protein-coding 

RNAs, and the remaining 98% is ncRNAs 

(10). LncRNAs (>200 nucleotides in 

length) mirror the features of translatable 

RNA species, such as polyadenylation, 5' 

capping, transcription by RNA polymerase 

II, and splicing (11-13). It was initially 

considered that LncRNAs lack biological 

functions, however, recent studies have 

demonstrated that LncRNAs are associated 

with a spectrum of imperative biological 

processes, such as cell growth, 

maintenance of genome integrity, 

apoptosis, cell differentiation, and 

transformation (14-17). LncRNAs are 

considered to be predominantly involved 

in epigenetic regulation of gene expression 

primarily in transcriptional rather than 

post-transcriptional level. Functionally, 

LncRNAs usually interact with histone 

modifiers, typically polycomb repressive 

complex (PRC) -1 and 2 (18). Based on 

the orientation, this epigenetic regulation 

could occur either by cis or trans-acting 

LncRNAs encoded at the proximity of 

their target genes or geographically distant 

locations of the genome, respectively (19). 

The expression of LncRNAs is 

developmentally regulated and tissue-

specific, while their expression quantity is 

lower than protein-coding genes (1). By 

the advent of high-throughput sequencing 

methods for transcriptomics studies like 

RNA-sequencing and tiling array, 

LncRNAs appeared to be one of the 

missing players in cancer development and 

have recently attracted considerable 

attention in the field of cancer biology 

(18). B-ALL-associated long RNA-2 

(BALR-2) is overexpressed in BCP-ALL 

patients and its overexpression is 

associated with poor overall survival and 

diminished response to treatment with 

prednisone (20). Likewise, BALR-6 up-

regulation is associated with elevated cell 

proliferation and diminished apoptosis in 

BCP-ALL cells (21). High levels of 

LncRNA HOXA cluster antisense RNA2 

(HOXA-AS2) induce glucocorticoid 

resistance by increasing cell proliferation 

and suppressing cell apoptosis in BCP-

ALL (22). Aberrant up-regulation of 

LncRNA ZEB1-AS1 predicted poor 

prognosis of childhood B-ALL (23). 

Moreover, overexpression of RP11-

137H2.4 LncRNA has been implicated in 

loss of cell cycle arrest, apoptosis, and cell 

migration in pediatric B-ALL (24). Hence, 

knowledge of the expression pattern of 

LncRNAs during tumorogenesis provides 

a future direction toward targeted therapies 

in cancer. 

Antisense non-coding RNA in the INK4 

locus (ANRIL), also known as cyclin-

dependent kinase inhibitor 2B antisense 

RNA 1 (CDKN2B-AS1), is a LncRNA 

located within the 9p21.3 locus 

encompassing CDKN2B/CDKN2A gene 

cluster. This gene cluster contains three 

protein-coding genes and ANRIL LncRNA 

is located in the antisense position to them. 

The protein-coding genes include MTAP, 

CDKN2A, and CDKN2B which encode 

methylthioadenosine phosphorylase, 

p16INK4A, and p15INK4B respectively. P14ARF 

is another splice variant of CDKN2A gene 

(25, 26). P15INK4B and p16INK4A function as 

tumor suppressors and exert a prominent 

role in cell proliferation, senescence, and 

apoptosis. Functionally, these proteins are 
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cyclin-dependent kinase inhibitors that 

suppress CDK4/6 to inhibit the 

phosphorylation of retinoblastoma (27, 

28). ANRIL preliminary identified by 

evaluating the germ-line deletion of this 

gene cluster in inheritable melanoma-

neural system tumors (29). ANRIL gene 

consists of 21 exons with various isoforms, 

which are expressed on a tissue-specific 

basis (30, 31). It is reported that ANRIL 

exerts its epigenetic activity by interaction 

with PRCs and microRNA sponging. 

Several studies indicate that ANRIL 

recruits the histone modifiers of PRC-1 

and -2 to the neighboring genes 

CDKN2A/B and suppresses their 

expression via the chromatin modification 

mechanism (32, 33). 

The exact mechanism of action of ANRIL 

LncRNA is not yet fully understood. 

However, its aberrant expression or 

dysregulation is frequently reported in a 

broad spectrum of cancers (18). By 

investigating the expression pattern of 

ANRIL LncRNA, this study took the 

initial step to approximate its role in 

pediatric BCP-ALL etiology. In this 

regard, relative quantification of the 

transcriptional level of ANRIL LncRNA in 

distinct phases of BCP-ALL has been 

carried out.  

 

Materials and Methods 
Patients 

In this case-control study, a total of 50 

peripheral blood specimens were collected 
following written informed consent 

obtained from patients at different clinical 

stages of pediatric BCP-ALL, including 20 

newly diagnosed (ND) patients, 20 

complete remission (CR) samples as well 

as 10 relapsed cases who presented to 

Mahak Hospital and Rehabilitation 

Complex, and Rasul Akram Hospital 

(Tehran, Iran). The details of the samples 

were listed in Table I. In addition, 20 

peripheral blood specimens from age and 

sex-matched healthy children displaying 

no signs of any disease were taken as 

controls from Massoud Clinical 

Laboratory (Tehran, Iran). The diagnosis 

of BCP-ALL was made mainly according 

to the World Health Organization (WHO) 

criteria (based on cytomorphology, 

immunophenotyping, and cytogenetic 

analysis) (34). ND patients with BCP-ALL 

were treated based on Berlin-Frankfurt-

Munster (BFM) protocol (35) and 

complete remission was defined as the 

presence of less than 5% blasts in the bone 

marrow, the absence of leukemic blasts in 

cerebrospinal fluid (CSF) and peripheral 

blood, and no evidence of extramedullary 

disease (36). Relapse was considered as 

the recurrence of ≥ 25% lymphoblasts in 

the bone marrow and/or localized 

leukemic infiltrates at any site(37). 

 

Ethical Consideration 

The Medical Ethics Committee of Iran 

University of Medical Sciences (agreement 

number IR.IUMS.REC.1397.1008) 

permitted this study. 

 

Mononuclear cells separation, RNA 

extraction, and cDNA synthesis 

Mononuclear cells were isolated from 

patients' peripheral blood using the 

density-gradient centrifugation method by 

Pancoll human (PAN-Biotech GmbH, 

Aidenbach, Germany). Total RNA was 

extracted from mononuclear cells using 

TriPure isolation reagent (Roche Applied 

Science) according to the manufacturer’s 

recommendation and following the 

PrimeScript™ RT reagent Kit protocol 

(Takara, Tokyo, Japan),1µg of RNA was 

used for complementary DNA (cDNA) 

synthesis. 

 

Quantitative real-time PCR 

Quantitative real-time polymerase chain 

reaction (qRT-PCR) was carried out using 

specific gene primers and Real Q Plus 2X 

Master Mix Green without ROX 

(Ampliqon, Odense, Denmark) according 

to the instructions of the manufacturer in a 

Light Cycler 96 Real-time PCR system 

(Roche Diagnostics, Lewes, UK). 

Following conditions were employed for 
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PCR amplification: 95°C for 15 min 

followed by 40 cycles of 95°C for 15 s and 

60°C for 60 s for the annealing/elongation 

step. All samples were done in triplicate, 

and the fold-changes were calculated 

based on the 2-ΔΔCt relative expression 

formula. ACTB gene was used as an 

internal control. Primer sequences are 

represented in Table II. 

 

Statistical analysis 
All data were presented as median with 

interquartile range. Mann-Whitney U test 

was used to analyze two independent 

samples. Spearman rank correlation test 

was used to analyze the association 

between ANRIL gene expression and 

patients' laboratory parameters. 

Statistically, differences were defined as 

significant at a p-value less than 0.05. 

Statistical analysis was performed using 

Prism 6.01 software (GraphPad, La Jolla, 

California, USA). 

 

Results 
ANRIL is up-regulated in ALL patients' 

samples at diagnosis and down-

regulated after complete remission. 

This case-control study included 50 BCP-

ALL patients. In ND, there were 15 males 

(75 %) and 5 (25 %) female patients; in the 

CR group, 12 were males (60%) and 8 

were females (40%); in relapses, there 

were 7 males (70%) and 3 females (30%) 

The mean age of the patients in ND, CR, 

and relapse phases were 6.3, 8.3, and 10.8 

years, respectively. In the control group, 

there were 13 males (65%) and 7 females 

(35%). The mean age of the healthy 

individuals was 7.9 years (Table I). The 

ANRIL mRNA expression levels in ND, 

CR, and relapse phases were 31.51 (18.28 

to 44.75), 1.24 (0.80 to 1.69), and 285.4 

(269.70 to 301), respectively (Figure 1). 

Current findings showed that ANRIL 

expression was remarkably higher in ND 

patients samples in comparison to the 

control group (P<0.001). Intriguingly, the 

transcriptional expression level of ANRIL 

was significantly down-regulated in the 

CR phase after induction therapy 

compared with ND patients. Interestingly, 

this study demonstrated that 

overexpression of ANRIL levels might be 

associated with the recurrence of BCP-

ALL. ANRIL expression was markedly 

overexpressed in relapsed patients by more 

than 200 fold-changes compared with the 

CR group. Moreover, the expression level 

of ANRIL mRNA was significantly higher 

in relapsed patients compared to ND 

patients (P<0.001). In addition, the 

correlation analysis between mRNA 

expression of the ANRIL and laboratory 

findings mentioned in Table I have been 

conducted through Spearman rank 

correlation. Current results demonstrated 

that there was no statistically significant 

correlation of ANRIL gene expression 

levels with patients’ white blood cell 

(WBC) count, peripheral blood blast 

percentage, hemoglobin concentration, and 

platelet count (Table III). 

 

 

 

 

 

Figure 1. ANRIL expression level was higher 

in newly diagnosed and relapsed patients 

compared to patient's samples after complete 

remission. ANRIL expression levels in 

peripheral blood samples from newly 

diagnosed (n=20), complete remission (n=20), 

relapsed patients (n=10), and healthy 

volunteers (n=20) were determined by 
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quantitative real-time polymerase chain 

reaction. (***P-value<0.001). ANRIL: 

antisense non-coding RNA in the INK4 locus. 

 

 

 

Table I: Demographic characteristics and laboratory variables of the patients.

 

Table II: The forward and reverse primer sequences used for real-time PCR. 
 

 

 

Table III: Correlation between ANRIL gene expression and laboratory characteristics

 

 

Discussion 
Since the expression of genes involved in 

cell proliferation, differentiation, 

apoptosis, and metastasis directly or 

indirectly regulates by LncRNAs, it has 

been proposed that these molecules could 

act as tumor suppressors or oncogenes (38, 

39). Moreover, it has been stated that 

LncRNAs could be considered as a 

potential diagnostic or prognostic 

biomarker in many cancers (40). Less well 

appreciated is the alteration of ANRIL 

expression levels and its presumptive role 

in BCP-ALL. In the present study, it was 

observed that the expression level of 

ANRIL is drastically increased in ND 

patients. Current results suggest that 

ANRIL might have a tumor promoter role 

in pediatric BCP-ALL. Present data were 

Variables New case 

(N=20) 

Complete remission 

(N=20) 

Relapse 

(N=10) 

Control 

(N=20) 

Sex (%) 15 males (75%) 

5 females (25%) 

12 males (60%) 

8 females (40%) 

7 males (70%) 

3 females (30%) 

13 males (65%) 

7 females (35%) 

Age (years) 1 to 15 (mean: 6.3) 1 to 16 (mean: 8.3) 2.5 to 15 (mean: 

10.8) 

2 to 14 (mean: 

7.9) 

WBC count 

(×109/L) 

2.2 to 92 (mean: 

20.2) 

4.4 to 18.7 (mean: 

8.61) 

6 to 118 (mean: 

36.4) 

3.1 to 8.5 

(mean: 6.31) 

Blast (%) 21 to 94 (mean: 54) 0 28 to 90 (mean: 61) 0 

Hemoglobin (g/dl) 2.8 to 13.7 (mean: 

8.9) 

8.8 to 16.7 (mean: 13) 7.2 to 11.6 (mean: 

8.5) 

13.5 to 16.7 

(mean: 14.8) 

Platelet (×109/L) 17 to 392 (mean: 

120) 

57 to 564 

(mean:221.68) 

35 to 189 (mean: 

142) 

189 to 312 

(mean: 246) 

Name Primer Sequence Size (bp) 

ACTB 

 

ANRIL 

Forward 

Reverse 

Forward 

Reverse 

5ʹ-GGAAATCGTGCGTGACATTAAG-3ʹ 

5ʹ-GAAGGAAGGCTGGAAGAGTG-3ʹ 

5ʹ-TCTGATTCAACAGCAGAGATCAAAG-3ʹ 

5ʹ-CTGACTCGGGAAAGGATTCCAG-3ʹ 

181 

 

166 

PCR: polymerase chain reaction; ACTB: Actin beta; ANRIL: Antisense non-coding RNA in the INK4 locus. 

 

 New case Complete remission Relapse 

Variables r P r P r P 

WBC count (×109/L) +0.534 0.061 (ns) +0.502 0.092 (ns) +0.302 0.101 (ns) 

Blast (%) +0.614 0.052 (ns) +0.603 0.058 (ns) +0.598 0.091 (ns) 

Hemoglobin (g/dl) -0.275 0.122 (ns) -0.266 0.159 (ns) -0.259 0.200 (ns) 

Platelet (×109/L) -0.391 0.089 (ns) -0.401 0.078 (ns) -0.382 0.099 (ns) 

Ns = non-significant; - 

r value = correlation coefficient 
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in harmony with other studies in which the 

oncogenic role of ANRIL has been 

indicated. In previous studies, it has been 

shown that ANRIL was up-regulated in 

acute myeloid leukemia (AML) patients 

and several solid tumors such as liver (41, 

42), bladder (43), stomach (44), lung (45-

47), nasopharyngeal (48, 49), esophageal 

(50), ovary (51), thyroid (52), and breast 

cancers (53). In these cancers, one of the 

major consequences of ANRIL 

overexpression was silencing of 

CDKN2A/B tumor suppressor genes which 

results in high cellular proliferation and 

low apoptosis rate. High levels of ANRIL 

expression in the tissue in all these 

malignancies has been correlated with 

invasive clinicopathological findings such 

as advanced tumor-node-metastasis stage, 

high histological tumor grade and size, and 

poor overall survival. Additional studies 

reported that ANRIL is up-regulated in 

adult T-cell leukemia/lymphoma (ATLL) 

patients and cell lines infected by HTLV-1 

through E2F1-mediated strengthening of 

ANRIL promoter. Furthermore, ANRIL 

knockdown in ATLL cells suppressed 

proliferation and induced apoptosis (54). 

In a further study on 108 patients with 

multiple myeloma (37) who received high-

dose melphalan (as the initial line of 

therapy) and then undergone autologous 

stem cell transplantation (ASCT), it was 

observed that patients with TT genotype of 

rs2151280 in the ANRIL gene have more 

redundant expression of ANRIL and 

inferior expression of p14 gene which 

indicates the reduced p53 activity. These 

findings may explain the correlation of 

impaired p53-dependent response to the 

melphalan treatment and high risk of 

relapse after ASCT in MM patients (40). 

In colorectal cancer, ANRIL also causes 

chemoresistance by induction of ATP-

binding cassette subfamily C member 1 

(ABCC1) via binding Let-7a miRNA (55). 

Zhu et al. indicated that CTCF, a 

transcriptional regulator protein and a 

putative positive regulator of ANRIL 

promoter (56), was significantly 

overexpressed in ND pediatric BCP-ALL 

patients and its expression downregulated 

to the normal level after complete 

induction therapy and rebounded as 

patients experiencing relapse (57). 

Conclusion 
LncRNAs have recently been recognized 

as the novel player in the multiple aspects 

of cell biology and dysregulation of their 

expression has been reported in the vast 

majority of human diseases including 

cancers. This study showed the ANRIL 

gene is markedly overexpressed in ND and 

relapsed BCP-ALL samples suggesting 

that it might play an oncogenic role in the 

leukemic cells. Accordingly, it could be 

considered as a potential diagnostic and 

prognostic biomarker or therapeutic target 

in BCP-ALL. However, the precise 

mechanism of function attributed to 

ANRIL LncRNA in pediatric BCP-ALL 

remains ambiguous.  
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