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Abstract

Vaso-occlusive crisis (VOC) is the hallmark and most debilitating complication of sickle cell disease (SCD), yet
its pathophysiology is multifactorial and not completely understood. This review examines the molecular and
cellular events that drive VOC, highlighting the synergistic interaction between hypoxia, inflammation, and
coagulation. Recurrent deoxygenation triggers hemoglobin S polymerization, causing red blood cell (RBC)
sickling, loss of deformability, and microvascular obstruction. These events lead to endothelial activation,
leukocyte adhesion, and platelet-leukocyte aggregation, fostering a hyperinflammatory, prothrombotic milieu.
The increase in oxidative stress and release of cytokines result in neutrophil extracellular trap (NET) formation,
exacerbating vascular injury and sustaining thromboinflammation. Together, these processes form a self-
perpetuating loop, where hypoxia-induced inflammation and immunothrombosis reinforce VOC onset and
severity. By elucidating these interlinked pathways, the review highlights novel therapeutic targets, particularly
those modulating endothelial dysfunction, platelet-neutrophil crosstalk, and NET-driven coagulopathy. These
mechanistic insights open new avenues for targeted interventions aimed at disrupting the VOC cycle and
improving clinical outcomes in SCD. VOC in SCD represents a complex, self-amplifying pathological cascade
driven by the interconnected processes of hypoxia, inflammation, and coagulation. Hypoxia, initiated by
microvascular occlusion and compounded by impaired hemoglobin oxygen delivery, triggers a systemic
inflammatory response, mobilizing innate and adaptive immune cells that further damage the endothelium and
perpetuate vascular obstruction. Concurrently, hypoxia-induced activation of ECs and platelets facilitates a
hypercoagulable state, characterized by TF expression, NETosis, and impaired anticoagulant mechanisms.
These thromboinflammatory events not only exacerbate local ischemia but also extend systemically,
contributing to multi-organ dysfunction and long-term morbidity in SCD patients. This review aims to provide
an in-depth analysis of the molecular and cellular mechanisms that underlie VOC in SCD, with particular
emphasis on the roles of hypoxia, inflammation, and coagulation.
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Introduction

Vaso-occlusive crisis (VOC) represents
one of the most debilitating and defining
clinical manifestations of sickle cell
disease (SCD), characterized by episodes
of acute pain, tissue ischemia, and organ
damage (1, 2). Despite significant
advancements in our understanding of
SCD, the precise mechanisms underlying
VOC remain multifactorial and complex
(3). SCD is marked by the presence of

hemoglobin S (Hb S), which polymerizes
under conditions of low oxygen tension,
leading to red blood cell (RBC) sickling,
microvascular occlusion, and impaired
blood flow (4). These changes initiate a
cascade of pathological events involving
endothelial dysfunction, inflammatory cell
activation, and alterations in hemostatic
balance.
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Among these processes, hypoxia serves as
a primary driver of RBC sickling and
endothelial injury (5, 6). The dynamic
interaction  between  hypoxia  and
subsequent cellular responses, such as
oxidative stress and inflammation, forms a
vicious cycle that exacerbates VOC
episodes (7). As sickled RBCs become
trapped within the microcirculation, their
interaction with endothelial cells (ECs),
platelets, and leukocytes promotes a pro-
inflammatory and prothrombotic
environment, which further sustains the
occlusion (8, 9). Additionally, the
activation of neutrophils and the release of
neutrophil extracellular traps (NETS) have
emerged as significant contributors to the
thromboinflammatory milieu, highlighting
a complex network of interactions that
worsen vascular damage and perpetuate
the crisis (10).

This review aims to provide an in-depth
analysis of the molecular and cellular
mechanisms that underlie VOC in SCD,
with particular emphasis on the roles of
hypoxia, inflammation, and coagulation.
By exploring these interconnected
pathways, this article seeks to identify
potential therapeutic targets to break the
cycle of VOC and improve clinical
outcomes for individuals with SCD.
Pathogenesis and Clinical Consequences
of VOC

VOC is the most prevalent and clinically
significant ~ complication of  SCD,
responsible for an estimated 197,000
emergency department visits each year
(11). These painful episodes manifest in
various anatomical locations and forms,
ranging from acute conditions such as
dactylitis  (hand-foot syndrome) and
hepatic sequestration to chronic syndromes
including osteomyelitis and neuropathic
pain (11). VOC is triggered when hypoxic
conditions, driven by  hemoglobin
abnormalities, increase the polymerization
of Hb S, leading to RBC sickling,
membrane  injury, and  premature
hemolysis. The resulting release of free
hemoglobin, labile iron, and reactive
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oxygen species (ROS) promotes oxidative
stress and a pro-inflammatory vascular
environment (12-16).

These changes activate ECs, leukocytes,
and platelets, enhancing cellular adhesion
and contributing to  microvascular
occlusion.  Impaired tissue perfusion
exacerbates ischemia-reperfusion injury,
ultimately causing localized tissue damage
and the hallmark pain associated with
VOC  (12-15). Repeated episodes
contribute to progressive  end-organ
damage, especially in the kidneys, liver,
and skeletal system, further deteriorating
patients' quality of life (12).

Previously, VOC treatment focused on
symptomatic  relief using hydration,
opioids, and nonsteroidal anti-
inflammatory drugs (NSAIDs) (13).
Today, more advanced interventions such
as hydroxyurea (to increase fetal
hemoglobin levels), chronic transfusion
therapy for high-risk patients, and
hematopoietic stem cell transplantation are
more commonly used (17). Promising
future strategies aim to target VOC
pathogenesis directly by reducing cell
adhesion and inflammation, through the
use of oxygen affinity modifiers and anti-
inflammatory agents (17).

Molecular Mechanisms Underlying Hb
S Polymerization

Hb S polymerization is the primary
molecular event driving the pathogenesis
of SCD (18). A point mutation in the B-
globin gene replaces glutamic acid with
valine, creating a hydrophobic site on
deoxygenated Hb S. This change promotes
hydrophobic interactions between valine
and adjacent residues, alanine,
phenylalanine, and leucine, on neighboring
Hb S molecules, facilitating tetramer
formation  (18).  These  tetramers
periodically aggregate into double-
stranded polymers. Seven of these strands
assemble laterally to form helical, 14-
stranded fibers approximately 20 nm in
diameter (19-22). Stabilization of these
fibers occurs through axial and lateral
contacts among tetramers. Polymerization
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begins with a delay phase, during which
15-30 tetramers nucleate to form a stable
core, a process known as homogeneous
nucleation.  Subsequent heterogeneous
nucleation involves the addition of new
tetramers onto existing fibers, leading to
rapid, exponential polymer growth. Once
approximately 250 tetramers accumulate,
dense, insoluble polymer networks form,
deforming RBCs and impairing their
deformability and flow dynamics (19-22).
The Kkinetics of polymerization are
influenced by the degree of deoxygenation
and the intracellular levels of Hb S and
fetal hemoglobin (Hb F). Oxygenation
inhibits the exposure of hydrophobic sites,
preventing tetramer formation and
destabilizing early polymers. Hb F, which
lacks the hydrophobic domain necessary
for valine binding, disrupts polymer
formation, explaining the therapeutic
benefit of Hb F-inducing agents such as
hydroxyurea (23). Therapeutic strategies
also target polymerization by increasing
oxygen affinity, lowering Hb S
concentration, or interfering  with
intermolecular contacts. Ultimately, the
clinical severity of SCD is tightly linked to
the kinetics of Hb S polymerization, which
is amplified under hypoxic conditions and
impeded blood flow, allowing sufficient
delay time for fiber nucleation and growth
(24) (Table ).

ECs and Their Role in VOC
Pathogenesis

ECs, which form the innermost lining of
blood vessels, act as a dynamic interface
between circulating blood and vascular
walls. These cells closely regulate vascular
tone, hemostasis, immune surveillance,
and inflammatory responses. In the context
of SCD, endothelial activation or
dysfunction serves as a central contributor
to pathological events such as VOC and
atherosclerosis (25).

The endothelial surface provides a
conducive environment for the adhesion
and accumulation of sickled RBCs.
Activated ECs express a range of adhesion
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molecules, including selectins and
integrins, which promote the attachment of
both leukocytes and deformed RBCs.
Moreover, ECs influence clot formation
and vascular tone by releasing
prothrombotic and vasoactive mediators,
further promoting VOC episodes (26).
SCD is characterized by a heterogeneous
population of RBCs, some of which
display membrane damage and reduced
lifespan (27). These damaged cells exhibit
a greater tendency to adhere to ECs and
other blood components. The adhesion
process initiates with P-selectin-mediated
interactions, followed by stabilization
through molecules such as VCAM-1,
CD36, integrins, and thrombospondin-1
(TSP) (28). Injury to the endothelial
monolayer exposes subendothelial matrix
proteins, intensifying cell adhesion and
obstructing blood flow (29). Hypoxia,
hemolysis, and recurring VOC episodes
exacerbate  endothelial dysfunction,
upregulating the expression of adhesion
molecules and elevating oxidative stress.
This, in turn, recruits monocytes and
neutrophils via interactions with EC-
expressed selectins and intercellular
adhesion molecules (ICAMs), leading to
leukocyte extravasation and enhanced
inflammation. ECs also regulate platelet
function in this cascade. Specifically, the
binding of platelet CD47 to endothelial
TSP activates a2f3 integrins, facilitating
interactions with ICAM-4 and ICAM-1
through  fibrinogen bridges, thereby
worsening microvascular occlusion (30,
31). Under normal conditions, ECs
maintain  anticoagulant and  anti-
inflammatory states. In SCD, however,
endothelial dysfunction skews this balance
toward a prothrombotic phenotype.
Proinflammatory signaling induces the
secretion of granules containing von
Willebrand factor (VWF) and factor VIII,
promoting platelet aggregation and
vascular blockage. Additionally, ECs
express elevated levels of tissue factor
(TF), driving thrombin generation. Once
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activated, thrombin interacts  with
protease-activated receptors (PARS) on
ECs, perpetuating vascular injury (32).
One of the key homeostatic roles of ECs is
the synthesis of nitric oxide (NO), which
inhibits vasoconstriction, platelet adhesion,
leukocyte recruitment, and smooth muscle
proliferation via the cyclic guanosine
monophosphate (cGMP) signaling
pathway. In SCD, endothelial NO
synthesis is impaired due to reduced levels
of essential cofactors including arginine
and tetrahydrobiopterin  (BH4), and
increased levels of inhibitors such as
asymmetric dimethylarginine (ADMA).
Under these conditions, endothelial nitric
oxide  synthase  (eNOS)  becomes
uncoupled, producing superoxide instead
of NO, thereby contributing to oxidative
stress and  vascular  constriction.
Furthermore, hemolysis and inflammatory
stimuli (e.g., TNF) increase endothelial
arginase activity, depleting arginine levels
and further impairing NO production. The
interaction of superoxide with NO
generates peroxynitrite, which oxidizes
BH4 and compounds endothelial
dysfunction (Figure 1) (33). Given the
pivotal role of ECs in VOC development,
recent therapeutic strategies have targeted
endothelial adhesion pathways to reduce
disease severity. In a Phase 2 clinical trial,
Ataga et al. demonstrated that treatment
with  crizanlizumab, a monoclonal
antibody against P-selectin, significantly
lowered the frequency of VOC episodes by
inhibiting RBC-EC adhesion (34). In
addition, a Phase 3 trial involving
rivipansel, an E-selectin inhibitor, showed
that this agent could reduce VOC duration
and the need for opioid analgesia in SCD
patients by  blocking leukocyte-
endothelium interactions (Table II) (35).
Hypoxia and Its Implications in SCD-
Related VOC

Patients with SCD, particularly those with
homozygous SS genotype, often exhibit
reduced oxygen saturation compared to
healthy individuals. Oxygen partial
pressure (PO,) shows a direct correlation
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with Hb levels and Hb F expression and an
inverse association with leukocyte counts
(36). Dense RBCs, which are enriched in
Hb S, are more prevalent under hypoxic
conditions and contribute to oxygen
desaturation, further promoting sickling
and vascular occlusion (Figure 2) (37). A
key contributor to desaturation is a
rightward shift of the oxyhemoglobin
dissociation curve (ODC), indicating
reduced oxygen affinity of Hb and an
elevated Ps, value, the oxygen tension at
which hemoglobin is half-saturated. This
shift is amplified in SCD due to both the
intrinsic properties of Hb S and elevated
levels of 2,3-diphosphoglycerate (2,3-
DPG), a metabolic byproduct upregulated
in response to chronic anemia and
hypoxia. These adaptations facilitate
oxygen unloading to tissues but
inadvertently exacerbate hypoxia by
destabilizing oxygen transport (38).
Hemolysis in  SCD also elevates
circulating levels of dyshemoglobins, such
as carboxyhemoglobin (COHb) and
methemoglobin  (MetHb), which are
incapable of effectively binding or
releasing oxygen. Their accumulation
further compromises arterial oxygen
content and contributes to systemic
hypoxemia (39, 40). Anemia and
morphological changes in sickled RBCs,
which impair their deformability and
reduce their circulation time, also diminish
oxygen-carrying capacity and exacerbate
tissue hypoxia (41, 42).

Endothelial dysfunction plays a central
role in this process. Hemolysis releases
free hemoglobin and ROS that rapidly
scavenge NO, a vasodilator critical for
maintaining vascular tone. The resultant
NO depletion leads to vasoconstriction,
impaired oxygen delivery, and increased
cellular adhesion within the vasculature.
Moreover, reduced NO availability
enhances the adhesiveness of sickled cells,
fostering an environment conducive to
vaso-occlusive events (43). Therapeutic
interest in restoring NO bioavailability has
led to studies exploring the efficacy of
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inhaled NO in SCD. Although preliminary
findings and animal models suggested
beneficial effects, including case reports
and early trials, a subsequent Phase 2
clinical study failed to demonstrate
significant improvements in VOC duration
or clinical outcomes, highlighting the
complexity of NO-based interventions (44-
47). VOC episodes may also cause upper
airway obstruction and hypoventilation,
further impairing oxygen exchange and
exacerbating desaturation. This initiates a
vicious cycle, hypoxia contributes to
further Hb S polymerization and
hemolysis, which in turn increases ATP
release. Extracellular ATP is degraded into
adenosine, which, through the engagement
of A2B adenosine receptors (ADORA2B),
enhances  2,3-DPG  synthesis  and
perpetuates sickling (41). Additionally,
hypoxia  stabilizes  hypoxia-inducible
factors (HIFs), particularly HIF-1a, which
promote extracellular adenosine
accumulation, suppress eNOS activity, and
amplify vascular injury. Nonetheless, HIF-
la also induces protective pathways, such
as the upregulation of heme oxygenase-1
(HO-1), which facilitates heme
degradation and may mitigate hemolysis-
induced damage (48, 49).

Experimental models further demonstrate
that hypoxic stress increases plasma levels
of scavenging proteins such as hemopexin
(Hx) and haptoglobin (Hp), which bind
free  hemoglobin and heme, thereby
attenuating hemolysis-associated toxicity
(50).

Ultimately, hypoxia serves as both a
trigger and a consequence of vaso-
occlusion. The sequence begins with
reduced oxygen delivery, triggering
sickling and hemolysis. This, in turn,
promotes vascular adhesion and occlusion,
leading to VOC and tissue ischemia. The
resulting hypoxia perpetuates this cycle,
causing severe pain and systemic
complications (51). Despite the potential
benefits of oxygen therapy in reversing
early sickling events, clinical outcomes
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remain inconsistent. Notably, oxygen
supplementation does not appear to
significantly shorten VOC duration or
alleviate pain severity, underscoring the
need for further investigation into the
complex role of hypoxia in SCD
pathophysiology (52).

Inflammation in SCD

In SCD, persistent hemolysis, particularly
the intravascular rupture of sickled RBCs,
drives a potent inflammatory cascade.
Approximately one-third of this hemolysis
occurs within blood vessels, releasing free
hemoglobin and heme into the
bloodstream. When the body's binding
proteins, such as haptoglobin and
hemopexin, become overloaded, free
hemoglobin binds to NO, effectively
sequestering it and impairing endothelial
function and vasodilation (53).
Simultaneously, the imbalance between
ROS production and antioxidant defenses
exacerbates endothelial damage (54). This
oxidative stress originates from several
sources, including Hb S autoxidation (55),
elevated xanthine oxidase (XO) (56),
NADPH oxidase (57), cytochrome P450,
and cyclooxygenase activity (58). These
oxidative  damages result in EC
dysfunction, triggering the expression of
adhesion  molecules and  recruiting
leukocytes and platelets to the site of
injury.

Macrophages and dendritic cells within the
tissues release interleukin (IL)-23, driving
the production of IL-17A by T cells. This
cascade stimulates the release of
granulocyte colony-stimulating factor (G-
CSF), promoting neutrophil activation and
adhesion to the injured endothelium
through  chemokines and  adhesion
molecules. As hemolysis and tissue injury
continue, damaged cells release danger-
associated molecular patterns (DAMPS),
including heme, ATP, mitochondrial
DNA, and heat shock protein 70 (HSP70),
which  activate  pattern  recognition
receptors (PRRs) such as toll-like
receptors (TLRs) on ECs, macrophages,
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and platelets, triggering inflammasome
formation and the release of pro-
inflammatory cytokines (59-61).

The inflammasome, a cytoplasmic protein
complex composed of adapter protein
apoptosis-associated speck-like protein
containing a CARD (ASC) and
procaspase-1, plays a critical role in
promoting inflammation. Once activated,
caspase-1 processes IL-1p and IL-18 into
their mature forms, amplifying acute
inflammatory responses. This activation
also triggers pyroptosis, a highly
inflammatory form of cell death (62). In
parallel, DAMPs stimulate neutrophils to
release NETs, composed of chromatin and
granule proteins, which entrap RBCs and
platelets, further contributing to occlusion
and vessel rigidity (63).

Platelets, in turn, act as amplifiers of the
inflammatory response. They induce IL-8
production in ECs via nuclear factor kappa
B (NF-xB) signaling and secrete
cytokines, such as IL-1B, TNFSF14, and
IL-6, which recruit neutrophils and
exacerbate  NET  formation  (64).
Furthermore, glycolipid antigens from
damaged cells activate invariant natural
killer T (iNKT) cells, which secrete
interferon-y (IFN-y) and chemokines such
as CXCR3, amplifying neutrophil
recruitment and promoting inflammation.
Elevated numbers of active INKT cells
have been documented during VOCs (65).
The complement system also plays a
pivotal role in the inflammatory cycle.
Heme stimulates ECs to release Weibel-
Palade bodies, upregulating surface
expression of P-selectin. This molecule
interacts with complement component
C3b, triggering complement activation.
Additionally, heme can promote the
release of C5a and C5b-9, which not only
exacerbate endothelial injury but also
activate inflammatory pathways such as
NF-«xB (66).

Vaso-occlusion and ischemia-reperfusion
injury represent another critical aspect of
SCD-associated  inflammation.  When
blood flow is disrupted, tissues become

Iran J Ped Hematol Oncol. 2025, Vol 15, No 3, 564-581

hypoxic, and upon reperfusion, ROS and
calcium influx trigger further cellular
damage. DAMPs, such as ATP, high-
mobility group box 1 (HMGB1), and
HSPs, are released, amplifying
inflammatory signaling and contributing to
a vicious cycle of tissue damage (67).
Overall, inflammation is central to the
pathophysiology of VOCs in SCD, driving
both the onset and progression of these
episodes. Studies have consistently shown
elevated levels of pro-inflammatory
cytokines, particularly 1L-8 and IL-17,
during active crises, compared to steady-
state conditions (68,69).

Coagulation System and Thrombotic
Events in SCD

Hemostasis relies on a coordinated
response involving blood vessels, platelets,
and plasma proteins to maintain blood
flow and prevent excessive blood loss.
Upon injury, vascular smooth muscle cells
(VSMCs) and platelets manage primary
hemostasis, while the coagulation factors
in both intrinsic and extrinsic pathways act
in concert to form stable fibrin clots,
initiating secondary hemostasis (70-72).
TF,  predominantly  expressed by
perivascular cells such as VSMCs, acts as
the key initiator of the extrinsic
coagulation pathway (73). While TF
expression is essential for preventing
blood loss during vascular injury, studies
have revealed its increased expression in
SCD. This heightened TF expression is
evident not only in circulating ECs but
also in microparticles (MPs) derived from
both ECs and monocytes (74, 75). In
addition, TF procoagulant activity is found
to be elevated in the whole blood of
individuals with SCD (76). The
combination of increased TF expression,
endothelial injury, and heightened vascular
permeability promotes TF exposure to
coagulation factors, contributing to clot
formation and thrombosis (77, 78).
Moreover, sickling and damage to RBCs
leads to the translocation of
phosphatidylserine (PS) from the inner to
the outer leaflet of the RBC membrane,
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generating a negatively charged surface.
This negative charge triggers the
coagulation cascade through electrostatic
interactions with the positively charged y-
carboxyglutamic acid domains present in
coagulation factors II, VII, IX, and X (79,
80). Additionally, PS exposure is linked
with acquired protein S deficiency in SCD,
which accelerates the clearance of protein
S from circulation. Since protein S plays a
synergistic role in inhibiting coagulation
factors V and VIII, its reduced levels
further promote hypercoagulability (81,
82). MPs derived from RBCs and platelets
activate the intrinsic coagulation pathway
through factor XII, whereas those derived
from  monocytes  primarily  induce
thrombin generation through TF (83).
Additionally, VWF levels are elevated in
SCD npatients, particularly during VOCs,
while the activity and levels of
ADAMTS13, the enzyme responsible for
cleaving VWEF, are diminished (84).
Several factors contribute to the elevated
VWF in SCD, including enhanced
production, impaired clearance, and
damage to ADAMTS13. The oxidation of
ADAMTSI13’s cleavage site, coupled with
free hemoglobin binding to domain A2 of
VWEF, impairs the enzyme's functionality
(85). The persistence of VWF multimers in
circulation and their adherence to ECs
promote cell adhesion and platelet
aggregation,  ultimately  exacerbating
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VOCs and thrombotic complications (86,
87).

The level of VWF is also increased in
SCD patients, particularly during VOC,
while the level and activity of
ADAMTS13 decrease during these crises
(88, 89). Several factors contribute to the
elevated VWF in SCD, including enhanced
production, impaired clearance, and
damage to ADAMTS13. The oxidation of
ADAMTSI13’s cleavage site, coupled with
free Hb binding to domain A2 of VWF,
impairs the enzyme's functionality (77, 90,
91). The persistent adherence of VWF
multimers to ECs and its increased
circulation lead to cell adhesion to ECs
and platelet aggregation, resulting in VOC
and thrombotic complications  (92).
Moreover, SCD patients show an increase
in antiphospholipid antibodies, particularly
IgG-PS, which contribute to both venous
and arterial thrombosis by targeting
phospholipid-binding proteins (93, 94).
Thrombotic activity markers, such as the
thrombin-antithrombin  complex (TAT)
and prothrombin activation fragment
(F1.2), are elevated in SCD patients, with
TAT levels rising more significantly
during VOCs. Fibrinolytic markers,
including  D-dimers and  plasmin-
antiplasmin complexes (PAP), also show
increased levels, with greater elevations
observed in severe VOC episodes (95, 96).
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Topic

Impact of Hb S
polymerization factors on
clinical outcomes

The role of Hb F in SCA

Erythroid adhesion molecules

in SCA

Role of oxidative stress, NO,
and RBC microparticles in
SCA

Activation of vascular
endothelium by stimulated
monocytes

Relationship between
nocturnal oxyhemoglobin
desaturation and VOC
complications

Simultaneous polymerization
and adhesion under hypoxia

Neutrophil-Platelet Micro-
Emboli Enable VOC

Pro-inflammatory cytokine
levels and TGF-B in SCD
during VOC and steady state

Complement pathway
activation during VOC in
SCD

Relationship of coagulation
and platelet activation with
clinical complications in SCD

Mohammadi et al

Table I. Selected Research on the Pathophysiology of VOC in SCD

Key Findings

Clinical severity in SCD predicted by Hb S polymerization, cell heterogeneity,
and membrane abnormalities.

Elevated Hb F levels inhibit Hb S polymerization, reducing red cell sickling and
VOC severity.

SCA infants show increased expression of adhesion molecules (Lu/BCAM,
ICAM-4, LFA-3) on reticulocytes.

Oxidative stress promotes eryptosis and RBC microparticle release, which
contribute to vascular dysfunction and endothelial inflammation via the TLR4
pathway.

Antioxidants and NO improve RBC deformability and reduce eryptosis.

Sickle monocytes are activated, producing higher TNF-o and IL-1 levels,
leading to endothelial activation and increased adhesion molecule expression.

Hypoxemia is associated with increased cellular adhesion and activation.
Chronic hypoxia contributes to CNS vasculopathy and stroke risk through
hypoxia-mediated pathways.

Young sickle RBCs exhibit unique adhesion dynamics, with polymerized Hb S
fiber bundles creating multiple adhesion sites, emphasizing their role in crisis
onset.

Neutrophils roll, arrest, and capture platelets, forming neutrophil-platelet micro-
emboli.

Micro-emboli evolve into micro-thrombi, blocking blood flow.

Adhesion is mediated by PSGL-1 and Mac-1 on neutrophils binding to P-selectin
and GPIba on platelets.

VOC patients had higher cytokine levels compared to steady-state patients, with
IL-8 showing significant increases.

Elevated IL-17 and TGF-p levels were noted in steady-state patients versus
controls.

Hydroxyurea reduced TNF-a, IL-1pB, and IL-17 levels

Significant elevation in complement activation markers (C3a, C5a, Bb) during
VOC compared to the steady state.

Complement activation was associated with intravascular hemolysis.
Coagulation markers (D-dimer, TAT) were linked to hemolysis indicators and
soluble vascular cell adhesion molecule-1.

D-dimer was associated with a history of stroke, TAT with retinopathy, and
CD40 ligand with pain episodes.

Samples

46 SS patients

272 SS patients

54 SCA infants

62 SCA
HAEC cell line

Sickle mononuclear

leukocytes
HUVEC cell line
MVEC cell line

9 SC patients
28 SS patients

8 SCA patients

Unknown SCA
patients

54 SCD patients (39
VOC, 15 steady-
state)

64 SCD patients

64 SCD patients

Abbreviations: Hb: Hemoglobin; SCA: Sickle cell anemia; SCD: Sickle cell disease; RBC: Red blood cell; VOC: Vaso-
occlusive crisis; HAEC: Human aortic endothelial cells; HUVEC: Human umbilical vein endothelial cells; MVEC: Human
dermal microvascular endothelial cells; IL: Interleukin; TNF: Tumor necrosis factor; TAT: Thrombin antithrombin.
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Table 1. Summary of Treatment Strategies Related to VOC

[ Downloaded from ijpho.ssu.ac.ir on 2025-11-24 ]
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. o : FDA-
Mechanism Administration approved Ref.
Increases Hb F production; reduces VOCs and
Hydroxyurea the need for blood transfusions. Oral YES (107)
Butyrate Stimulates Hb F production. Oral or infusion NO (108)
i - Acts as a DNA demethylating agent that Subcutaneous or
5-Azacytidine enhances Hb F production. intravenous NO (109)
Decitabine- Combination therapy that enhances Hb F
Tetrahydrouridine through epigenetic modulation. liiEanaLs e ()
. Reduces oxidative damage to RBCs, lowering
L-Glutamine the frequency of VOCs. Oral YES (111)
N-Acetylcysteine Reduces oxidative stress and hemolysis. Oral or intravenous  NO (112)
Inhibits abnormal blood rheology, improves
Poloxamer blood flow, and reduces viscosity. Intravenous NO (113)
Prasugrel Inhibits platelet interactions and thrombosis. Oral NO (114)
Ticagrelor Acts as a P.2Yl.2 receptor antagonist to reduce oral NO (115)
platelet activation.
Tinzaparin Inhibits thrpmbotlc activity and prevents blood Subcutaneous NO (116)
clot formation.
Reduces endothelial cell dysfunction; acts as a
Inhaled nitric oxide vasodilator to enhance blood flow and reduce Inhalation NO (117)
cell adhesion.
Voxelotor Inhibits Hb S polymerization Oral Yes (118)
R Inhibits P-selectin-mediated adhesive
Crizanlizumab interactions and decreases VOCs Intravenous Yes (119)
- Arginine enhances NO production, improving .
Arginine therapy vasodilation and blood flow in VOC Oral or intravenous  No (120)
Exagamglogene Enhances Hb F production Intravenous NO (121)
autotemcel (exa-cel)

Abbreviations: Hb; Hemoglobin, SCD; Sickle Cell Disease, RBC; Red Blood Cell, VOC; Vaso-Occlusive Crisis
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Figure 1. EC Dysfunction as a Central Driver of VOC in SCD.

The figure illustrates the pivotal role of ECs in the initiation and propagation of VOC. Circulating
blood components, platelets, WBCs, and sickled RBCs, contribute to a proinflammatory and
prothrombotic microenvironment. Activated platelets, in conjunction with leukocytosis, release a
cascade of inflammatory cytokines, chemokines, and procoagulant factors. These mediators trigger
EC activation and injury, leading to increased vascular permeability, elevated expression of adhesion
molecules, and the disruption of endothelial integrity. This dysfunction facilitates enhanced cellular
adhesion, thrombin generation, VWF accumulation, and fibrin deposition, ultimately promoting

vascular occlusion, impaired blood flow, and recurrent VOC episodes.
RBC: Red blood cell; VOC: Vaso-occlusive crisis; VWF: von Willebrand factor; WBC: White blood cell.
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Vaso occlusive crisis

Figure 2. Pathophysiological Cascade of VOC in SCD.

Deoxygenation and dehydration promote Hb S polymerization, leading to red blood cell sickling,
increased hemolysis, and reduced deformability. These events initiate endothelial dysfunction and
trigger NET formation, collectively amplifying inflammation and thrombotic processes. The resulting
immunothrombotic environment exacerbates microvascular occlusion and drives recurrent VOC

episodes in SCD.
Hb S: Hemoglobin S; NET: Neutrophil extracellular trap; VOC: Vaso-occlusive crisis
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Conclusion

VOC in SCD represents a complex, self-
amplifying pathological cascade driven by
the interconnected processes of hypoxia,
inflammation, and coagulation. Hypoxia,
initiated by microvascular occlusion and
compounded by impaired hemoglobin
oxygen delivery, triggers a systemic
inflammatory response, mobilizing innate
and adaptive immune cells that further
damage the endothelium and perpetuate
vascular obstruction. Concurrently,
hypoxia-induced activation of ECs and
platelets facilitates a hypercoagulable
state, characterized by TF expression,
NETosis, and impaired anticoagulant
mechanisms. These thromboinflammatory
events not only exacerbate local ischemia
but also extend systemically, contributing
to multi-organ dysfunction and long-term
morbidity in SCD patients.

This triad forms a vicious cycle: hypoxia
fuels inflammation; inflammation
promotes thrombosis; and coagulation
further impairs oxygen delivery, driving
the persistence and severity of VOC.
Recognizing this interaction is critical not
only for wunderstanding the disease
mechanism but also for identifying novel
therapeutic targets. Interventions aimed at
breaking this cycle, whether by modulating
inflammasome  activation,  preserving
endothelial  integrity, or  restoring
hemostatic balance, hold promise in
alleviating VOC severity and improving
outcomes in individuals living with SCD.
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