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Abstract

Background: The tumor microenvironment (TME) in acute lymphoblastic leukemia (ALL) significantly shapes
disease progression and therapeutic responses. This study investigates the regulatory role of bone marrow
mesenchymal stem cell (BMSC)-released transforming growth factor beta-induced factor homeobox 1 (TGIF1)
on myeloid nuclear differentiation antigen (MNDA) expression, immune infiltration, and patient prognosis in
ALL.

Materials and Methods: A comprehensive bioinformatics approach analyzed gene expression, protein
interactions, and immunological correlations. Differential expression, enrichment analyses, and protein-protein
interaction (PPI) networks identified key regulatory genes. The relationship between TGIF1 and MNDA and
their immunological impact were assessed through correlation and survival analyses.

Results: Differential analysis identified 424 differentially expressed genes (DGEs). The PPI network and Cox
regression highlighted MNDA as a significant gene associated with patient outcomes. High MNDA expression
correlated with better survival (P=0.013), and ROC analysis demonstrated its strong prognostic potential
(AUC=0.934). GSEA indicated MNDA involvement in immune-related signaling pathways. Immune infiltration
analyses linked MNDA expression to seven immune cell types. Additionally, transcription factor TGIF1
positively correlated with MNDA expression, significantly upregulated in healthy BMSCs but downregulated in
ALL samples.

Conclusion: BMSC-derived TGIF1 positively regulates MNDA expression, influencing immune infiltration and
ALL progression. Targeting the interplay between TGIF1 and MNDA introduces a new molecular strategy for
managing ALL.

Keywords: Acute Lymphoblastic Leukemia, Bioinformatics, Bone Marrow Mesenchymal Stem Cells, Myeloid
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Introduction

Acute lymphoblastic leukemia (ALL), a
hematological cancer, originates from the
malignant transformation of lymphoid
progenitors (1). As one of the most
aggressive hematological malignancies,
ALL is most commonly diagnosed in
childhood (2-4). The disease is marked by
chromosomal abnormalities and genetic
mutations that impair the normal
differentiation and  proliferation  of
lymphoid precursors (5). Beyond the
intrinsic  genetic alterations, mounting
studies highlights the critical role of the
tumor  microenvironment (TME) in
leukemia progression, treatment resistance,
and immune evasion (6).

Notably, the infiltration of immune and
stromal cells in the bone marrow TME has
been strongly associated with the initiation
and progression of ALL (7). Therefore,
targeting TME-associated  molecular
interactions may provide new therapeutic
strategies for ALL treatment. Myeloid
nuclear differentiation antigen (MNDA) is
a myeloid cell-specific protein involved in
cell  differentiation and  apoptosis
regulation (8, 9). Acute Lymphoblastic
Leukemia (AML) patients with reduced
MNDA expression exhibit a higher
proportion of granulocytes and monocytes
(10). Conversely, MNDA overexpression
is associated with better outcomes in
chronic lymphocytic leukemia (CLL),
where it influences the expression of
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MCL-1 and BCL-2 to promote apoptosis
in CLL cells (11). These observations
indicate that MNDA may have
immunomodulatory functions within the
TME of hematologic malignancies.

In this study, transforming growth factor
beta-induced factor homeobox 1 (TGIF1)
was identified as an  upstream
transcriptional regulator of MNDA in both
bone marrow mesenchymal stem cells
(BMSCs) and ALL cells. TGIF1 is known
to play roles in hematopoietic cell
differentiation and leukemia suppression.
Its expression is reduced in blasts from
patients with mixed lineage leukemia
rearrangement (MLL-r). In contrast,
TGIF1 overexpression in  MLL-AF9-
transformed cells faciliates differentiation
and delays leukemia onset (12).
Furthermore, TGIF1 suppresses stem cell
self-renewal, and its downregulation has
been associated with poor long-term
survival in acute myeloid leukemia (13).
Interestingly, TGIF1 is also expressed in
the wvascular compartment of chorionic
MSCs, suggesting a potential role in MSC-
mediated immunoregulation (14). Given
the emerging importance of MSCs in
hematopoiesis and immune modulation
(15), it is hypothesized that BMSCs-
derived TGIF1 may regulate MNDA
expression, thereby influencing immune
cell dynamics and ALL progression.

Although TGIF1 and MNDA have each
been  implicated in  hematological
malignancies, their interaction within the
ALL tumor microenvironment remains
unexplored. This study is the first to
propose the TGIF1I-MNDA axis as a novel
immunoregulatory pathway and potential
therapeutic target. TGIF1, a transcriptional
repressor of TGF-B signaling, was found
to upregulate MNDA, influencing immune
cell infiltration (e.g., Tregs, monocytes)
and modulating apoptotic pathways
(MCL-1/BCL-2). These findings provide
insight into immune evasion in ALL and
suggest that targeting this axis may
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improve chemotherapy response and
support precision immunotherapy
strategies (12).

Materials and Methods

Ethical Statement

This study is a bioinformatics-based
retrospective study investigating gene
expression, protein interactions, and
immunological correlations in the ALL
TME. All analyses in this study were
conducted using publicly accessible
datasets. As no direct involvement of
human participants or experimental
animals occurred, institutional ethics
approval and individual consent were not
necessary.

Datasets downloading and processing
The dataset was downloaded from the
Gene Expression Omnibus (GEO, NCBI,
USA) and the The Cancer Genome Atlas
(TCGA, National Cancer Institute, USA).
Using GEO database, GSE206172
microarray associated with MSCs was
downloaded, including three adipose
mesenchymal stem cell (AMSC) samples
and three BMSCs samples. RNA
sequencing (RNA-seq) data for ALL was
retrieved from the TCGA database,
encompassing 553 samples from tumors
and one from normal tissue. Utilizing the
University of California, Santa Cruz
(UCSC) Xena database, the RNA-seq data
and survival information for ALL tumor
samples and RNA-seq data for Genotype-
Tissue Expression (GTEX) normal samples
were downloaded, including 135 ALL
tumor samples, 341 tumor samples in
survival information analysis and 337
normal blood samples in GTEX.

Using Perl language, TCGA and GTEX
databases were merged, and only the genes
annotated in the two databases were
retained. The ALL sample data used for
screening transcription factors (TFs) were
obtained from TCGA database, and those
used for the remaining analysis from
UCSC Xena database (16).
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Differential analysis

The analysis for differentially expressed
genes (DEGs) was executed utilizing the
"limma" tool in R, focusing on the
GSE206172 microarray and the TCGA
and GTEx integrated dataset, with
selection parameters of |logFC| over 1 and
p-value under 0.05. Using the R software
"heatmap" package, heatmap of the DEGs
was drawn (16).

Classification of TME and acquisition of
candidate DGEs

Classification and scoring of stromal and
immune cells in the TME were conducted
using the "estimate" tool in R software.
The division of stromal and immune cells
into groups with high and low scores was
in light of their respective median values.
Differential gene analyses of these two
studied cell types were implemented with
the help of the R software "limma"
package. The intersection of DGEs
between stromal and immune cells was
carried out with the "VennDiagram™ tool
in R, which produced a Venn diagram to
highlight potential DGEs.

Gene functional enrichment analysis
Through the R software "clusterProfiler"
package, GO and KEGG analyses of the
candidate DGEs were made. The
"enrichplot” package facilitated the
creation of bar and bubble plots,
showcasing GO enrichment spanning
biological  processes  (BP), cellular
component (CC), and molecular function
(MF). Meanwhile, the bar, bubble and
circle plots of KEGG enrichment analysis
were drawn. Using C2.kegg.v2022.1
database from the GSEAA4.2.3 software,
the gene enrichment of key genes was
compared across groups characterized by
high and low expressions. Using the
"ggplot2" package in R, we visualized the
pathways significantly enriched by the key
genes, followed by construction of
multiple GSEA maps (17).
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Establishing networks of protein-
protein interactions (PPI)

Through the STRING database, candidate
DGEs obtained from the TME were used
for PPI analysis (with "species"” limited to
"human" and confidence level set as 0.7).
The number of adjacency nodes of each
gene was counted with R software, and the
top 55 genes were extracted to plot a
histogram.

Univariate COX analysis and receiver
operating characteristic (ROC) curve
analysis

Through the R software "survival"
package, univariate Cox analysis of
candidate DGEs was performed and forest
plot of the genes with p < 0.05 was drawn.
The 13 prognosis-related genes obtained
from the univariate Cox analysis were
intersected with the 55 genes in the PPI
network and the Venn plot was drawn to
obtain the key genes. Based on the
expression of candidate DGEs and status
of the samples from the ALL
transcriptome data, the ROC was plotted
utilizing the R software pROC package to
examine the accuracy of the selected key
genes (18). A gene’s capacity to serve as a
biomarker was validated through its area
under the ROC curve (AUC).

Differential analysis and survival
analysis of single gene

Through the R software "beeswarm"
package, a differential expression heatmap
of the key genes was drawn. Meanwhile,
the key genes were classified into high-
and low-expression groups concerning
their expression. Through the "survival"
and "survminer" packages, survival
analysis of the key genes was made.
Immune infiltration analysis

Key genes were stratified into high- and
low-expression cohorts concerning their
relative  transcript ~ abundance. To
characterize the immune landscape of ALL
samples, CIBERSORT was employed to
deconvolute immune cell populations. The
algorithm was run with 100 permutations
to ensure robustness, and only samples
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yielding results with p < 0.05 were
obtained. Through the R software
"corrplot” package, the results obtained
from CIBERSORT calculations were
visualized, and the immune cell histogram
and correlation plot were drawn (19).
Immune cell variability was subjected to
differential analysis via "vioplot”, while
intercellular correlations were visualized
through  "ggplot2”,  "ggpubr”, and
"ggExtra", retaining results with p < 0.05.
Overlapping immune features from both
analyses were integrated via a Venn
diagram to pinpoint gene-associated
immune subsets (20).

TF co-expression prediction

Through the human TF website, human TF
information was obtained. Differentially
up-regulated genes in GSE206172
microarray and differentially down-
regulated genes in the merged data of
TCGA and GTEx were extracted and
intersected with human TFs, and a Venn
plot was mapped to obtain key TFs.
Correlation analysis between each TF and
the key gene was performed (21, 22).
Statistical analysis

R software v4.0.1 (R Foundation for
Statistical Computing, Vienna, Austria)
was employed for data processing. The
mean + standard deviation was used to
express the measurement data. The initial
step involved conducting tests for
normality and variance homogeneity.
Unpaired t-tests were used to compare data
from two groups that conformed to normal
distribution and variance homogeneity,
followed by a Tukey post hoc test.
Correlations among observed indicators
were established through Spearman’s
correlation analysis. Differences with p-
values below 0.05 were interpreted as
statistical significance.
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Results

Bioinformatics analysis for screening
key genes in the TME affecting the
prognosis of ALL patients

To illuminate molecular mechanisms to
improve ALL, key genes were screened by
performing differential analysis of immune
and stromal cells in the TME applying
ALL RNA-seq data. In addition, PPI and
single-gene Cox regression analysis of
candidate DGEs were performed. Single-
gene survival analysis predicted the key
genes and survival prognosis of ALL
patients. Functional enrichment analysis
was implemented to analyze the biological
significance of key genes, and their
associations with immune cell infiltration
were  examined  through  immune
infiltration analysis. The bioinformatics
analysis process is elucidated in Figure 1.
The workflow illustrates the step-by-step
bioinformatics pipeline employed in this
study, starting from dataset acquisition to
differential gene expression analysis, gene
functional enrichment, PPl  network
construction, survival analysis, immune
infiltration analysis, and transcription
factor prediction.

Differential gene analysis identified 424
common DEGs in two studied cells in
the TME of ALL

The ALL-related gene expression dataset
was gathered through the UCSC Xena
database, including 135 tumor samples.
The TME in ALL is composed of immune
cells and stromal cell types. The cellular
contents of each sample determined their
classification into high and low content
groups, which were then analyzed for
differential gene expression. Differential
analysis of stromal cells was performed,
with 771 DEGs obtained (Figure 2A).
Differential analysis of immune cells was
performed, and 828 DEGs were obtained
(Figure 2B). The DEGs obtained from
stromal cells and immune cells differential
analyses were intersected, which finally
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yielded 424 common DEGs (Figure 2C) as
candidate DGEs.

GO and KEGG enrichment analyses
validated that the candidate DGEs were
enriched in the pathways related to
ALL development

GO functional analysis and KEGG
pathway analysis of candidate DGEs were
performed to deeply explore the MF
regulated by candidate DGEs. The results
of GO functional analysis showed that the
candidate DGEs were mainly enriched in
positive regulation of cytokine production,
leukocyte migration, cell chemotaxis,
myeloid leukocyte activation and positive
regulation of defense response in BP.
Candidate DGEs were mainly enriched in
tertiary  granule, secretory  granule
membrane and external side of plasma
membrane in CC. Candidate DGEs were
mainly enriched in immune receptor
activity, cytokine receptor activity,
chemokine receptor activity, amide
binding, and peptide receptor activity in
MF (Figure 3A, B).

The KEGG analysis uncovered that the
candidate DGEs were predominantly
linked to cytokine-cytokine receptor
interaction, neutrophil extracellular trap
formation, NOD-like receptor pathway
(Figure 3C, D).

The above results proposed that the
candidate DGEs were predominantly
engaged in promoting leukocyte migration,
activation, and the positive modulation of
cytokine activities. The candidate DGEs
were mainly enriched in the secretory
granule membrane and lateral plasma
membrane, with MF involved in regulation
of immune receptor, cytokine receptor and
chemokine activity.

KEGG analysis found that the candidate
DGEs were involved in life activities such
as neutrophil extracellular trap formation,
interactions  between cytokines and
cytokine receptors, and NOD-like receptor
pathway.

608

MNDA was a key gene in the TME of
ALL affecting the prognosis of ALL
patients

The candidate DGEs were input into the
String database, with the "species™ defined
as "human”, and the confidence level was
set to 0.7. The PPI network of candidate
DGEs in the TME of ALL was constructed
(Figure 4A). The number of adjacency
nodes of each gene was counted with R
software, and the top 55 genes based on
the node adjacency count were selected as
the key network genes, followed by
delineation of a bar graph (Figure 4B).

To further study the relationship between
candidate DGEs and ALL patient
prognosis, the survival data and gene
expression data of ALL patients from the
UCSC dataset were integrated, univariate
Cox analysis was performed, and a forest
map was drawn (Figure 4C). A total of 13
genes could significantly affect the
prognosis of ALL patients, among which
11 genes were high risk genes and 2 genes
were low risk genes.

The key genes of PPl network were
intersected with the prognosis-related
genes of ALL patients, and MNDA
(Figure 4D) was obtained. MNDA was the
key gene affecting the prognosis of ALL
patients in the TME.

The expression of MNDA in ALL samples
was  evaluated using  single-gene
differential expression analysis, which
revealed a significant downregulation of
MNDA compared to normal samples
(Figure 5A). Survival analysis (Kaplan-
Meier) unveiled that patients with
diminished MNDA  levels  faced
significantly worse outcomes than those
with higher expression (p = 0.013) (Figure
5B). The data suggests that MNDA may
act as a prognostic biomarker for ALL, as
its lower expression is associated with
disease progression and reduced survival.
The following ROC curve vyielding an
AUC of 0.934 (Figure 5C), demonstrating
excellent predictive accuracy. In general,
an AUC value above 0.9 is considered
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highly reliable for classification, further
supporting the potential of MNDA as a
prognostic biomarker for ALL.

GSEA revealed that MNDA regulated
the development of ALL through
enrichment in multiple immune-related
pathways

GSEA found that high MNDA expression
in the ALL UCSC dataset was strongly
associated with an enrichment in various
immune-related  signaling  pathways,
including  cytokine-cytokine  receptor
interaction, natural Kkiller cell-mediated
cytotoxicity, Toll-like receptor signaling
pathway and NOD-like receptor signaling
pathway. Meanwhile, high MNDA
expression was associated with apoptosis,
lysosomes, complement and coagulation
cascades, and hematopoietic cell lineages
(common  lymphoid  progenitors  or
common myeloid progenitors) (Figure 6).
Immune infiltration analysis of tissue
samples of ALL patients with high or
low MNDA expression

TME includes different immune cells (23),
and immune cell infiltration analysis can
help us better understand tumor
development (24). The immune infiltration
analysis combined with CIBERSORT
algorithm (Figure 7A) showed that the
overall composition of immune cells had
no significant difference between the two
established groups, but the proportion of
different immune cells had difference. The
correlation analysis found a certain
correlation between the immune cell
components of the tissue in ALL patients
(Figure 7B), but most of the correlation
occurred in the same type of immune cells.
The differential analysis results (Figure
8A) displayed that among the immune cell
components, B cells naive, B cells
memory, T cells CD4 naive, T cells
follicular helper, NK cells activated,
monocytes, macrophages M2  and
neutrophils had significant difference
between ALL patients categorized by high
and low MNDA expression. Moreover, a
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notable correlation was witnessed between
MNDA expression and immune cell
components including B cells naive, T
cells CD4 naive, T cells follicular helper,
NK cells activated, monocytes,
macrophages M2, and neutrophils (Figure
8B-H). The cells obtained from the
immune cell differential analysis were
intersected with those obtained from the
correlation analysis, which yielded seven
immune cells related to MNDA (Figure
81). Among them, B cells naive, T cells
CD4 naive, T cells follicular helper and
NK cells activated were negatively
correlated with MNDA expression, while
monocytes, macrophages M2  and
neutrophils were positively correlated with
MNDA expression.

These findings imply that MNDA could be
involved in immune cell infiltration in the
TME of ALL patients, thereby impacting
the progression of ALL.

TGIF1 might regulate MNDA
expression to affect the development of
ALL

To elucidate the regulatory landscape
governing MNDA expression in ALL, a
predictive analysis was implemented to
identify potential upstream TFs involved
in its modulation. First, transcriptome data
of healthy AMSCs and BMSCs were
extracted from GSE206172 microarray for
differential analysis (Figure 9A), and 316
down-regulated DEGs in healthy BMSCs.
Meanwhile, 4753 down-regulated DEGs in
ALL patients were screened from the
DEGs in the merged dataset of TCGA and
GTEx (Figure 9B). Through the humantfs
website, 1369 human TFs  were
downloaded and intersected with the two
datasets of DEGs to obtain two TFs
(MAFB, TGIF1) (Figure 9C). It has been
reported that TGIF1 affected the
proliferation of myeloid cells, and the
absence of TGIF1 could accelerate
leukemia progression and shorten survival,
which indicated that TGIF1 had a
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protective role in the development of
leukemia (25).

Results from the Pearson correlation
analysis uncovered a positive link between
the expression of TGIF1 and MNDA in the
TCGA and GTEXx transcriptomic data
(Figure 9D). Through the JASPAR
website, the binding sites of TGIF1

(Figure 9E), and binding sites between
TGIF1 and MNDA promoter regions
(Table I) were predicted. Collectively, the
TF TGIF1 might regulate MNDA
expression, affecting the development of
ALL.

Table I: Binding sites between TGIF1 and MNDA promoter region
Transcription factor ~ Gene Name Start  End

Predicted sequence Relative score

' MA0796.1.TGIF1 ~ MNDA 1909 1920 TGACATCTGAAA 0.81378406
MA0796.1.TGIFI  MNDA 1909 546 TTTCAGATGTCA 0.7874207
MA0796.1.TGIFL  MNDA 764 775 AGAAAGCTGTCC 0.7614015
MA0796.1.TGIFL  MNDA 536 547 TGCCTGCTGCCA 0.7605489

Note: TGIF1, transforming growth factor beta-induced factor homeobox 1; MNDA, myeloid nuclear differentiation antigen.

610

Iran J Ped Hematol Oncol. 2025, Vol 15, No 4, 604-620

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License.



http://dx.doi.org/10.18502/ijpho.v15i4.19629 
https://ijpho.ssu.ac.ir/article-1-909-en.html

[ Downloaded from ijpho.ssu.ac.ir on 2025-11-03 ]

[ DOI: 10.18502/ijpho.v15i4.19629 ]

Song et al.

The Cancer Genome Atlas

ESTIMATE | | CIBERSOR

LA

S

Figure 1. Schematic overview of bioinformatics analysis process.
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Figure 2. Identification of common DEGS in stromal and immune cells within the TME of ALL. A,
Heatmap of DEGs in stromal cells in ALL gene expression dataset. B, Heatmap of DEGs in immune
cells in ALL gene expression dataset. C, Venn diagram illustrating shared DEGs between stromal and
immune cell populations.
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Figure 3. GO and KEGG enrichment analyses of candidate DGEs. A & B, GO function analysis of
candidate DGEs in BP, CC, and MF. C & D, KEGG analysis of candidate DGEs.
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Figure 4. Identification of key genes in the TME of ALL affecting the prognosis of ALL patients. A,
PPI network of candidate DGEs in ALL TME. B, Histogram of the key genes of the PPI network. C,
Forest plot presenting the results of univariate Cox analysis. DEGs are listed on the left, with
corresponding p-values shown centrally. Hazard ratios, displayed on the right, reflect the relative risk:
values >1 signifies high-risk genes, while values <1 denotes low-risk genes. Gene risk status is color-
coded—red for high-risk and green for low-risk candidates. D, Venn diagram depicting the overlap
between hub genes identified from the PPI network and prognosis-related genes in ALL patients.
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immune cell types are represented by different colors, with the color legend provided on the right. B,
Immune cell correlation diagram. Each small circle indicates the pairwise correlation between two
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Figure 9. Prediction of transcription factors that regulate MNDA expression. A, Heatmap of the
differential analysis of transcriptome data of healthy AMSCs and BMSCs extracted from GSE206172
microarray. B, Differential analysis of the merged dataset of TCGA and GTEx. C, Venn diagram
summarizing the shared differentially up-regulated genes in GSE206172 microarray, differentially
down-regulated genes in the merged dataset of TCGA and GTEX, and human transcription factors. D,
Correlation analysis between TGIF1 and MNDA. E, The binding sites of TGIF1 predicted through
JASPAR website.
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Figure 10. Schematic illustration of the molecular mechanism of BMSCs-released TGIF1 in
regulating the development of ALL through MNDA. BMSCs-released TGIF1 can up-regulate the
expression of MNDA, thereby inhibiting the infiltration of immune cells within the TME of ALL
patients, which ultimately thwarts the development of ALL.
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Discussion

Immune microenvironment is critical in
ALL and immune-based therapeutic
methods are promising for ALL treatment
(26, 27). This study aimed to elucidate the
mechanism by which BMSCs-derived
TGIF1 regulates MNDA in the TME of
ALL and its potential implications for
disease progression and immune response
modulation.

The results identified MNDA as a key
immune-related gene within the ALL
TME, with its low expression being
significantly ~ correlated  with  poor
prognosis. MNDA was previously
associated with hematopoietic
differentiation and apoptosis regulation
(28, 10). In CLL, MNDA has been
reported as a favorable prognostic marker
(29-31), where its low expression is linked
to increased apoptosis resistance through
MCL-1 and BCL-2 regulation (11).
Expanding on these findings, the study
suggests that MNDA may exert a broader
immunoregulatory role in ALL, as its
expression was found to be concentrated in
multiple immune-related pathways.

GSEA further demonstrated that MNDA
participates in cytokine-cytokine receptor
interactions, chemokine signaling, and
neutrophil activation, which are critical
immune processes within the TME.
MNDA expression showed a positive
correlation with neutrophil infiltration,
consistent with previous reports that
MNDA is involved in neutrophil activation
and immune response modulation (32, 33).
This suggests that MNDA may contribute
to the immunological dynamics of ALL by
influencing immune cell interactions,
thereby affecting disease progression.
However, further mechanistic studies are
required to clarify these functional roles.
In addition to identifying MNDA as a
prognostic ~ factor, the study also
demonstrated that TGIF1 may serve as an
upstream transcriptional regulator of
MNDA. TGIF1 has been previously

Iran J Ped Hematol Oncol. 2025, Vol 15, No 4, 604-620

implicated in hematopoietic differentiation
and leukemia suppression (25, 34).
Notably, TGIF1 was found to be
significantly  upregulated in healthy
BMSCs but downregulated in ALL
samples, indicating a potential protective
role. Prior studies have shown that TGIF1
loss accelerates leukemia progression,
while its overexpression can counteract
leukemia stem cell proliferation induced
by IRF7 deficiency (34). Furthermore,
TGIF1 expression has been identified in
the wvascular niche of MSCs (14),
supporting its involvement in stromal-
mediated leukemia regulation. These
findings align with the hypothesis that
BMSCs-derived TGIF1 may influence
MNDA expression and contribute to
immune modulation within the TME of
ALL.

While this study contributes novel
perspectives on MNDA in ALL, several
limitations should be acknowledged. First,
the computational findings were derived
primarily from RNA-seq profiles of TCGA
ALL tumor samples and GTEx-derived
normal blood samples. Despite the
relatively adequate sample size, the
observed AUC of 0.934 in ROC analysis
may be inflated due to potential bias
arising from internal validation.
Furthermore, the absence of external
datasets restricts the generalizability of the
results and raises concerns about possible
overfitting. Future work will focus on
incorporating independent cohorts to
robustly assess the diagnostic and
prognostic potential of MNDA. Second,
the current study is largely grounded in
bioinformatic  inference, and  the
conclusions drawn require validation
through functional experiments involving
primary ALL specimens or animal models
to substantiate the biological relevance of
the findings. Third, although in silico
predictions indicated that TGIF1 may act
as a transcriptional regulator of MNDA via
promoter  binding, this  regulatory
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relationship has yet to be verified by direct
molecular assays such as ChlIP-seq or
luciferase reporter analysis. Empirical
confirmation of this interaction remains a
critical next step. Lastly, the regulation of
MNDA is likely multifactorial, and
additional  transcription  factors  not
assessed in this study may also contribute
to its expression dynamics. Future
investigations should broaden the scope to
identify other key regulators involved in
MNDA transcriptional control.

Conclusion

In conclusion, BMSCs-released TF TGIF1
up-regulated the transcriptional expression
of MNDA, thus inhibiting immune cell
infiltration in the TME of ALL and
ultimately suppressing the development of
ALL (Figure 10). This research highlights
potential molecular markers that could be
pivotal for detecting and treating ALL.
However, clinical samples could not be
collected, and in vivo animal models could
not be constructed for mechanistic
validation, requiring further research.
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