Volume 8, Issue 3 (5-2018)                   Iran J Ped Hematol Oncol 2018, 8(3): 153-160 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alemi A, Farrokhifar M, Zare-Zardini H, Haghi Karamallah M. A Comparison between the Anticancer Activities of Free Paclitaxel and Paclitaxel-Loaded Niosome Nanoparticles on Human Acute Lymphoblastic Leukemia Cell Line Nalm-6. Iran J Ped Hematol Oncol 2018; 8 (3) :153-160
URL: http://ijpho.ssu.ac.ir/article-1-388-en.html
Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Abstract:   (3535 Views)
Background: Niosomes or Nonionic surfactant vesicles are nano vehicles utilized in drug delivery systems, especially in cancer therapy. In this study, these vesicles were applied as delivery system for anticancer drug, paclitaxel and then, its anticancer activities was compared with free paclitaxel on Human Acute Lymphoblastic Leukemia (ALL) cell line Nalm-6.
Materialas and Methods: In this exprimental study, paclitaxel loaded niosome was prepared by thin film hydration method. The characterization tests included dynamic light scattering (DLS) and UV-Vis spectrophotometry were employed to evaluate the quality of the nanocarriers. Cytotoxicity of niosomal paclitaxel nanoparticles and free paclitaxel on human acute lymphoblastic leukemia cell line Nalm-6 after 24 hours were studied by MTT assay to determine cell viability.
Results: Percent of encapsulation paclitaxel prepared with sorbitane monostearate, cholesterol, and DSPE-mPEG 2000 was 97.21 %. In addition, the polydispersity index, mean size diameter, and zeta potentials of niosomal paclitaxel nanoparticles were found to be 0.244 ± 0.011, 106.3 ± 1.5 nm, and -26.03 ± 1.34; respectively. Paclitaxel released from nanoniosome in 72 h was 19.81 %. The results demonstrated that a 2.5∼fold reduction in paclitaxel concentration was measured when the paclitaxel administered in nanoniosome compared to free paclitaxel solution in human acute lymphoblastic leukemia cell line Nalm-6.
Conclusion: As a result, the nanoparticle-based formulation of paclitaxel has high potential as an adjuvant therapy for clinical usage in human acute lymphoblastic leukemia therapy.
Full-Text [PDF 452 kb]   (1090 Downloads)    
Type of Study: Research | Subject: Heart
Received: 2018/05/31 | Accepted: 2018/05/31 | Published: 2018/05/31

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Pediatric Hematology and Oncology

Designed & Developed by : Yektaweb